Figures (6)  Tables (2)
    • Figure 1.  Disease severity index (DSI) distribution in the three datasets (Bolinha, Contender, Combined).

    • Figure 2.  Number of SNPs included in genome wide association study and genomic prediction analysis for the three datasets (Bolinha, Contender and Combined). (a) Number of SNPs per chromosome. (b) Venn diagram for SNPs shared by all three datasets.

    • Figure 3.  (a) Heat map of kinship matrix of the testing panel and, (b) population structure of the three datasets (Bolinha, Contender and Combined).

    • Figure 4.  Predictive accuracy for five-fold cross validation of several genomic prediction models and marker-assisted selection (MAS) model in three datasets (Bolinha, Contender and Combined) for wounded (W) and non-wounded (NW) disease severity index (DSI).

    • Figure 5.  Predictive accuracy for leave-one-family-out cross-validation of several genomic prediction models in the Bolinha and Contender datasets for wounded (W) and non-wounded (NW) disease severity index (DSI).

    • Figure 6.  Comparison of mean genomic estimated breeding value (GEBV) between individuals with low and high field observed disease incidence (FDI).

    • TraitTraining setValidation setModelPredictive accuracy
      NW DSIBolinhaContenderBayes A0.154
      Bayes B0.166
      Bayes C0.147
      Bayesian LASSO0.156
      Bayesian Ridge0.156
      GBLUP0.158
      RKHS0.128
      rrBLUP0.154
      OtherBayes A0.279
      Bayes B0.292
      Bayes C0.307
      Bayesian LASSO0.279
      Bayesian Ridge0.289
      GBLUP0.293
      RKHS0.301
      rrBLUP0.293
      ContenderBolinhaBayes A0.06
      Bayes B0.057
      Bayes C0.057
      Bayesian LASSO0.079
      Bayesian Ridge0.066
      GBLUP0.063
      RKHS0.052
      rrBLUP0.06
      OtherBayes A−0.129
      Bayes B−0.139
      Bayes C−0.107
      Bayesian LASSO0.012
      Bayesian Ridge−0.117
      GBLUP−0.095
      RKHS−0.132
      rrBLUP−0.095
      W DSIBolinhaContenderBayes A0.157
      Bayes B0.131
      Bayes C0.125
      Bayesian LASSO0.097
      Bayesian Ridge0.121
      GBLUP0.147
      RKHS0.147
      rrBLUP0.13
      OtherBayes A0.121
      Bayes B0.104
      Bayes C0.105
      Bayesian LASSO0.11
      Bayesian Ridge0.097
      GBLUP0.106
      RKHS0.116
      rrBLUP0.106
      ContenderBolinhaBayes A−0.133
      Bayes B−0.15
      Bayes C−0.133
      Bayesian LASSO−0.132
      Bayesian Ridge−0.147
      GBLUP−0.096
      RKHS−0.137
      rrBLUP−0.103
      OtherBayes A−0.169
      Bayes B−0.139
      Bayes C−0.177
      Bayesian LASSO−0.192
      Bayesian Ridge−0.139
      GBLUP−0.219
      RKHS−0.142
      rrBLUP−0.218

      Table 1.  Predictive accuracy of genomic prediction models for wounded (W) and non-wounded (NW) disease severity (DSI) traits when using the Bolinha or Contender datasets as the training population.

    • BLUPrrBLUPGBLUPBayesABayesBBayesCBayesLassoBayesRidgeRKHS
      FDI_BLUP
      rrBLUP0.550**
      GBLUP0.549**1.000**
      BayesA0.548**0.995**0.995**
      BayesB0.549**0.998**0.999**0.991**
      BayesC0.550**0.998**0.998**0.998**0.995**
      BayesLasso0.537**0.994**0.994**0.984**0.997**0.989**
      BayesRidge0.553**0.995**0.994**0.999**0.990**0.998**0.982**
      RKHS0.552**0.991**0.991**0.994**0.986**0.994**0.978**0.994**
      ** − Correlation detected at the significant level of 0.01.

      Table 2.  Spearman's correlation between BLUP of field observed flesh disease incidence (W_FDI) and genomic estimated breeding value obtained from genomic prediction models.