Figures (6)  Tables (3)
    • Figure 1. 

      A heterograft model of A. annua scion and N. benthamiana rootstock. (a) The upper half of A.annua and bottom half of N. benthamiana were cut using a sharp knife. Through the apical wedge grafting technique, the two part were combined and co-grown for a month. (b) The density of gladular trichome in leaves and (c) artemisinin content were calculated as shown in the histogram, no less than three biological replicates were performed for each data.

    • Figure 2. 

      DEGs and potential mobile mRNAs identified from the Aa/Nb heterograft model. The upper scion part belonged to A. annua, and the bottom rootstock part was N. benthamiana as separated with horizontal line. The left half of the information was the number of up-regulated and down-regulated of different expression genes related to comparing with the same plant. The right half of the photo exhibited the movement process of mRNAs and identification of non-homologous genes.

    • Figure 3. 

      Volcano photo of differentially expressed miRNAs in scion and rootstock. Overall distribution of differentially expressed miRNA in (a) Aa scion and (b) Nb rootstock. The abscissa represents the differential expression multiple changes of miRNA in different samples. The ordinate represents the statistical significance of miRNA expression changes. Red dots represent significantly up-regulated differentially expressed genes, blue dots represent significantly down-regulated differentially expressed genes, and gray dots represent non-significantly differentially expressed genes.

    • Figure 4. 

      Regulatory network research of transcription factors in differentially expression miRNAs and heatmap analysis of target gene among Aa scion and Nb rootstock. (a) Network plot of different expression miRNAs in A. annua scion. (b) Heatmap of different expression miRNAs targets in A. annua scion. (c) Network plot of different expression miRNAs in N. benthamiana rootstock. (d) Heatmap of different expression miRNAs targets in N. benthamiana rootstock. The legend at the bottom of the left figure marks the miRNA name, target gene name and gene type in different colors and shapes, respectively. Heatmap of target genes was used FPKM as expression quantity. Different colors indicate different gene expression levels, from blue to white to red, indicating low to high expression levels, with red indicating high expression genes and blue indicating low expression genes. The group of each gene corresponds to the color bar on the left.

    • Figure 5. 

      Changes of genes involved in phytohormone signal transduction. (a) Phytohormone transduction pathway of A. annua scion. (b) Phytohormone transduction pathway of N. benthamiana rootstock. Changes in DEGs were mapped in boxes, green and red boxes represent down-regulated and up-regulated, respectively. Orange boxes represents genes in the pathway indicting bidirectional regulation. Purple boxes illustrate no DEG.

    • Figure 6. 

      The content of measured ABA, JA and CK in A. annua scion and N. benthamiana rootstock. The abscissa represents the sampling site, and the ordinate represents the phytohormone concentration. The error bar represents the standard error for three independent experiments.

    • PathwayPathway_IDGene nameGene number
      Protein processing in endoplasmic reticulumko04141Niben101Scf01834g01011;
      Niben101Scf12154g01009;
      Niben101Scf03138g01010
      3
      Ubiquitin mediated proteolysisko04120Niben101Scf01002g130021
      Spliceosomeko03040Niben101Scf09268g00007;
      Niben101Scf12154g01009;
      Niben101Scf05678g01001
      3
      ABC transportersko02010Niben101Scf01719g080101
      Carbon metabolismko01200Niben101Scf05270g01002;
      Niben101Scf14996g00009;
      Niben101Scf02480g02012
      3
      Biosynthesis of amino acidsko01230Niben101Scf05270g010021
      Glyoxylate and dicarboxylate metabolismko00630Niben101Scf02480g02012;
      Niben101Scf14996g00009
      2
      Amino sugar and nucleotide sugar metabolismko00520Niben101Scf16022g04004;
      Niben101Scf03036g03023
      2
      Tryptophan metabolismko00380Niben101Scf14996g000091
      Phagosomeko04145Niben101Scf03370g070041
      Isoflavonoid biosynthesisko00943Niben101Scf03016g000081
      Arginine and proline metabolismko00330Niben101Scf01580g050041
      Ribosome biogenesis in eukaryotesko03008Niben101Scf13167g00007;
      Niben101Scf02944g01014
      2
      RNA transportko03013Niben101Scf02944g010141
      Plant hormone signal transductionko04075Niben101Scf06996g020051
      Glycine, serine and threonine metabolismko00260Niben101Scf02480g020121
      Cysteine and methionine metabolismko00270Niben101Scf05270g010021
      Other glycan degradationko00511Niben101Scf05643g050011
      Glutathione metabolismko00480Niben101Scf01580g05004;
      Niben101Scf02562g00020
      2
      Ribosomeko03010Niben101Scf06081g02016;
      Niben101Scf05490g00015;
      Niben101Scf03365g04007;
      Niben101Scf13429g02004;
      Niben101Scf02102g01016
      5
      Sulfur metabolismko00920Niben101Scf05270g010021
      Photosynthesisko00195Niben101Scf01116g010041
      Peroxisomeko04146Niben101Scf14996g000091
      Endocytosisko04144Niben101Scf12154g0100971
      Plant-pathogen interactionko04626Niben101Scf02581g04013;
      Niben101Scf05565g02013
      2
      Oxidative phosphorylationko00190Niben101Scf01460g040181
      Polyketide sugar unit biosynthesisko00523Niben101Scf16022g040041
      Phosphatidylinositol signaling systemko04070Niben101Scf05565g020131

      Table 1. 

      KEGG pathway enrichment analysis of 50 Nb genes obtained from the Aa scion.

    • PathwayPathway_IDGene nameGene number
      Lysine degradationko00310CTI12_AA0353301
      Cutin, suberine and wax biosynthesisko00073CTI12_AA4768101
      Peroxisomeko04146CTI12_AA4768101
      Photosynthesisko00195CTI12_AA113120
      CTI12_AA297310
      CTI12_AA400200
      3
      Phagosomeko04145CTI12_AA6213401
      mRNA surveillance pathwayko03015CTI12_AA4156901
      RNA degradationko03018CTI12_AA4156901
      RNA transportko03013CTI12_AA4156901
      Oxidative phosphorylationko00190CTI12_AA2973101
      Steroid biosynthesisko00100CTI12_AA1067601
      Ribosomeko03010CTI12_AA1172302

      Table 2. 

      KEGG pathway enrichment analysis of 20 A. annua genes obtained from N. benthamiana rootstock.

    • AaAa scionNbNb rootstock
      Raw reads14,833,43314,976,06114,057,47913,596,666
      Rfam279,235351,738712,4231,801,176
      mRNA1,663,7421,523,1611,118,3621,698,556
      Valid reads10,043,7619,486,6868,143,5465,473,716

      Table 3. 

      Overview of miRNA sequencing data from Aa/Nb heterograft plants.