Figures (1)  Tables (1)
    • Figure 1. 

      Important historical milestones and future perspectives in gene transformation strategies and their application of Carica papaya L.

    • Trait improvementGene introducedTransformation methodReference
      Virus resistance
      PRSV resistanceTranslatable/ Untranslatable coat protein (CP)Biolistics[15,16,3942,44,45]
      Translatable/ Untranslatable CPAgrobacterium[21,24,25,34,39,
      4143, 4648]
      ReplicaseAgrobacterium[34]
      Untranslatable CPPollen tube[30]
      PRSV and PLDMV resistanceUntranslatable CPAgrobacterium[26,52]
      Fungal resistance
      Phytophthora palmivora resistanceStilbene synthase Vst1Biolistics[53]
      Antimicrobial peptide DmAMP1Biolistics[54]
      NPR1Biolistics[55]
      Bacterial resistance
      Dieback disease resistanceAcyl-homoserine lactonaseAgrobacterium[61]
      Insect resistance
      Carmine spider mite resistanceChitinaseBiolistics[62]
      Lectin GNABiolistics[66]
      Abiotic stresses tolerance
      Herbicide resistanceBarBiolistics[17]
      Aluminum toleranceCitrate synthaseBiolistics[68]
      Improvement of shelf life
      Untranslatable ACC oxidase (ACO)Biolistics[72]
      Untranslatable ACO1 and ACO2Agrobacterium[60,73]
      Untranslatable ACC synthase (ACS)Biolistics[9,74]
      Plant-based vaccine
      Antituberculosis vaccineESAT6 of tuberculosisAgrobacterium[81]
      Anticysticercosis vaccineSynthetic peptide genes (KETc1, KETc12, KETc7)Biolistics[82,84]

      Table 1. 

      Summary of transgenic studies in papaya genetic improvement.