Figures (1)  Tables (4)
    • Figure 1. 

      Schematic diagram showing some potential biotechnological applications of microbial proteases.

    • MicroorganismReference
      Bacteria
      Bacillus sp. CL18[29]
      Bacillus aryabhattai Ab15-ES[30]
      Bacillus stearothermophilus[31]
      Bacillus amyloliquefaciens[32]
      Geobacillus toebii LBT 77[33]
      Pseudomonas fluorescens BJ-10[34]
      Streptomyces sp. DPUA 1576[35]
      Vibrio mimicus VM 573[36]
      Lactobacillus helveticus M92[37]
      Microbacterium sp. HSL10[38]
      Serratia marcescens RSPB 11[39]
      Listeria monocytogenes[40]
      Brevibacterium linens ATCC 9174[41]
      Alteromonas sp.[42]
      Halobacillus blutaparonensis M9[43]
      Staphylococcus epidermidis[44]
      Yersinia ruckeri[45]
      Geobacillus stearothermophilus[46]
      Stenotrophomonas sp.[47]
      Aeromonas veronii OB3[48]
      Fungi
      Alternaria solani[49]
      Aspergillus niger DEF 1[50]
      Penicillium sp. LCJ228[51]
      Fusarium solani[52]
      Rhizopus stolonifer[53]
      Trichoderma viridiae VPG12[54]
      Mucor sp.[55]
      Moorella speciosa[56]
      Beauveria sp.[7]
      Cephalosporium sp. KSM 388[57]
      Yeasts
      Wickerhamomyces anomalus 227[58]
      Metschnikovia pulcherrima 446[58]
      Candida spp.[13]
      Yarrowia lipolytica[59]
      Rhototorula mucilaginosa KKU-M12C[60]
      Cryptococcus albidus KKU-M13C[60]

      Table 1. 

      Some protease-producing microorganisms.

    • Purification methodAdvantageDisadvantage
      UltrafiltrationHigh product throughput; lower complexity; economical; low maintenance; requires no chemicalsClogging of membrane hinders purification process
      PrecipitationSimple; reduces enzyme solubility in aqueous solutionNot efficient for complete enzyme purification; time consuming; difficult to use for large-scale enzyme purification
      Ion-exchange chromatographyHigh separation efficiency; simple; controllableBuffer requirement; pH dependence; inconsistency in columns; expensive columns
      Affinity chromatographyHigh sensitivity and specificity; gives high degree of enzyme purityDifficult to handle; requires limited sample volume; low productivity; uses expensive ligands; non-specific adsorption
      Hydrophobic interaction chromatographyVersatile; non-denaturingRequirement for non-volatile mobile phase

      Table 2. 

      Advantages and disadvantages of protease purification methods.

    • MicroorganismpH optimaTemperature optima (°C)Kinetics parameter
      (Km and Vmax)
      Substrate specificityReference
      Bacillus sp. CL188.055Casein and soy protein[29]
      Bacillus caseinilyticus8.060Casein, bovine serum albumin, gelatin and egg albumin[161]
      Bacillus licheniformis A109.0700.033 mg/ml & 8.17 µmol/ml/minCasein[162]
      Bacillus licheniformis UV-911.0605 mg/ml & 61.58 µM/ml/minCasein, haemoglobin and bovine albumin[163]
      Bacillus pumilus MCAS89.060Bovine serum albumin, casein, haemoglobin, skim milk, azocasein and gelatin[164]
      Bacillus pseudofirmus10500.08 mg/ml & 6.346 µM/minCasein[26]
      Bacillus circulans MTCC 794210603.1 mg/ml & 1.8 µmol/minCasein[165]
      Bacillus circulans M3411500.96 mg/ml & 9.548 µmol/ml/minCasein, ovalbumin and bovine serum albumin[166]
      Bacillus amyloliquefaciens SP18.0600.125 mg/ml & 12820 µg/mlCasein[156]
      Bacillus sp. NPST-AK1510.5602.5 mg/ml & 42.5 µM/min/mgGelatin, bovine serum albumin and casein[8]
      Stenotrophomonas maltophilia SK9.040Bovine serum albumin, casein and gelatin[167]
      Stenotrophomonas sp. IIIM-ST04510.015[47]
      Aeribacillus pallidus C109.0600.197 mg/ml & 7.29 µmol/ml/minCasein[168]
      Geobacillus toebii LBT 7713.0951 mg/ml & 217.5 U/ml[33]
      Streptomyces sp. M309.08035.7 mg/ml & 5 × 104 U/mgCasein, bovine serum albumin, bovine serum fibrin[169]
      Alternaria solani9.050[49]
      Beauveria bassiana AM-1188.035−400.216 and 0.7184 mM & 3.33 and 1.17 U/mg[170]

      Table 3. 

      Biochemical properties of some microbial proteases.

    • IndustryApplicationProduct
      DetergentRemove proteinaceous stains from clothes
      Improve washing performance in domestic laundry
      Clean fabrics
      LeatherSoaking, dehairing and bating
      Enhance leather quality
      Reduce or eliminate dependence on toxic chemicals
      Soft, supple and pliable leather
      FoodMeat tenderization; modification of wheat gluten; cheese-making; preparation of soy hydrolysates; improves extensibility and strength of doughProtein hydrolysate; cheese; soy sauce and soy products; meat products; enhanced dough volume
      Waste managementSolubilize (degrade) proteinaceous wastesAdditives in feeds and fertilizer
      BiomedicineAntimicrobial agents, anti-inflammatory agents, anti-cancer agents, anti-tumor agents, thrombolytic agentsTherapeutics and pharmaceuticals
      PhotographicRecover silver from X-ray filmsSecondary silver
      TextileSilk degummingHigh strength silk fibre; sericin powder

      Table 4. 

      Some potential biotechnological applications of microbial proteases