Figures (12)  Tables (4)
    • Figure 1. 

      Dependencies of (a) mass and (b) MLR of beech wood on temperature at different heating rates.

    • Figure 2. 

      Separated MLR curves using Gauss multi-peak fitting method at different heating rates.

    • Figure 3. 

      Linear fittings of ${\text{ln}}( {\beta /{T_p}^2} )$ vs $1/{T_p}$ in the Kissinger method.

    • Figure 4. 

      Linear fittings of ${\text{ln}}( {\beta /{T^2}} )$ vs $1/T$ plots in the KAS method: (a) water, (b) hemicellulose, (c) cellulose, (d) lignin.

    • Figure 5. 

      Linear fittings of $\ln ( {\beta /{T^{1.894661}}} )$ vs $1/T$ plots in the Tang method: (a) water, (b) hemicellulose, (c) cellulose, (d) lignin.

    • Figure 6. 

      Linear fittings of ${\text{ln}}( {\beta /{T^2}} )$ vs $1/T$ plots in the DAEM method: (a) water, (b) hemicellulose, (c) cellulose, (d) lignin.

    • Figure 7. 

      Dependencies of calculated ${E_a}$ on α using the KAS and Tang methods: (a) water, (b) hemicellulose, (c) cellulose, (d) lignin.

    • Figure 8. 

      Objective function values and the computation times of the three algorithms when optimizing kinetics of wood pyrolysis with 200-3000 population sizes and 200 iterations.

    • Figure 9. 

      Objective function value evolutions of the three algorithms when optimizing kinetics of wood pyrolysis with 3,000 population size and 6,000 iterations.

    • Figure 10. 

      Comparison between experimental and numerical MLRs using optimized parameters of GA at 5, 10 and 20 K/min heating rates.

    • Figure 11. 

      Comparison between experimental and numerical MLRs using optimized parameters of PSO at 5, 10 and 20 K/min heating rates.

    • Figure 12. 

      Comparison between experimental and numerical MLRs using optimized parameters of SCE at 5, 10 and 20 K/min heating rates.

    • #Reaction
      1Water → Vapor
      2Hemicellulose → θ1 Char + (1−θ1) Gas_H
      3Cellulose → θ2 Char + (1−θ2) Gas_C
      4−Lignin → θ3 Char + (1-θ3) Gas_L

      Table 1. 

      Reaction mechanism of beech wood.

    • ComponentKissingerKASTangDAEMAverage
      AEaAEaAEaAEaAEa
      Water1.49 × 10344.81.01 × 10342.62.61 × 10342.91.53 × 10342.61.72 × 10342.7
      Hemicellulose1.12 × 1012147.81.30 × 1013144.73.06 × 1013154.99.31 × 1012144.71.77 × 1013148.1
      Cellulose4.09 × 1012166.34.70 × 1012174.84.84 × 1012169.74.12 × 1012174.84.55 × 1012173.1
      Lignin2.34 × 1011180.56.40 × 1011170.71.46 × 1012171.27.96 × 1011170.79.66 × 1011170.9

      Table 2. 

      Estimated $A$ (s−1) and ${E_a}$ (kJ/mol) of wood pyrolysis by the Kissinger, KAS, Tang, and DAEM methods.

    • Population sizeGAPSOSCE
      tcom × 104 (s)R2 × 10−2tcom × 104 (s)R2 × 10−2tcom × 104 (s)R2 × 10−2
      2000.168.820.157.861.797.43
      4000.349.090.307.701.827.43
      6000.408.260.497.682.577.43
      8000.558.480.587.472.787.43
      1,0000.768.830.757.503.317.43
      2,0001.278.301.547.525.467.47
      3,0002.268.442.667.675.557.56

      Table 3. 

      Computation times and ${R^2}$ of GA, PSO and SCE optimizations.

    • ComponentParameterSearch rangeGAPSOSCE
      WaterA (s−1)1.72 × 102−1.72 × 1041.47 × 1041.49 × 1041.49 × 104
      Ea (kJ/mol)4.28 × 104−4.48 × 1044.4 × 1044.4 × 1044.4 × 104
      HemicelluloseA (s−1)9.41 × 1011−9.41 × 10135.53 × 10124.49 × 10124.18 × 1012
      Ea (kJ/mol)1.38 × 105−1.58 × 1051.4 × 1051.38 × 1051.38 × 105
      θ0−0.50.280.380.37
      CelluloseA (s−1)4.32 × 1011−4.32 × 10134.09 × 10123.95 × 10124.09 × 1012
      Ea (kJ/mol)1.6 × 105−1.8 × 1051.63 × 1051.63 × 1051.64 × 105
      θ0−0.50.130.120.12
      LigninA (s−1)6.0 × 1010−6.0 × 10122.22 × 10111.96 × 10111.15 × 1011
      Ea (kJ/mol)0−3.0 × 1051.23 × 1051.16 × 1051.13 × 105
      θ0−10.140.010.01
      n0−54.674.995

      Table 4. 

      Best optimized kinetics of wood pyrolysis by GA, PSO and SCE.