Figures (9)  Tables (4)
    • Figure 1. 

      Structure of convolutional neural network.

    • Figure 2. 

      Structure of graph convolutional neural network.

    • Figure 3. 

      Structure of recurrent neural network.

    • Figure 4. 

      Structure of LSTM network and GRU network.

    • Figure 5. 

      Structure of Transformer network.

    • Figure 6. 

      Structure of Temporal Convolutional Network.

    • Figure 7. 

      Encoder-Decoder structure diagram.

    • Figure 8. 

      Structure of ResNet network.

    • Figure 9. 

      Structure of multi-task learning.

    • ModelSpatial topology constructionSpatial dependencyTemporal dependencyData setOther factors
      CSTN[71]Raster3DCNNConv LSTMNYC-TODLocal spatial context, meteorological information, globally relevant context
      MultiConvLSTM[72]RasterMultiConvConvLSTMNYC taxiNone
      CLTS[73]RasterConv2DConvLSTMBeijing TaxiNone
      GEML[74]Raster (Geographic/
      semantic nodes)
      SGCN (Grid embedding)LSTMNYC-taxi /DiDi ChengDuMulti-task learning
      FL-GCN[75]GraphGraph convolution (nodes, edges)Kalman filteringNew Jersey HighwayNone
      CAS-CNN[76]RasterSplit CNNURTChannel-wise attention
      MPGCN[77]Graph2D-GCNLSTMDIDI Beijing /DiDi shanghaiNone
      GCN-SBULSTM[78]GraphGCNStacking bidirectional unidirectional LSTMsSZ MetroNone
      ST-ED-RMGC[79]GraphMulti-graph convolutional networksLSTMNYC taxiEncoder decoder
      DNEAT[80]Dynamic node
      topology
      GCN (k-TNEAT)k-hop temporal encoderDiDi ChengDu/ NYC taxiNone
      Spatial OD-BiConvLSTM[81]RasterConv2DBiLSTMNYC taxiNone
      CMOD[82]Graph (Event)The graph represents
      learning
      CTDG (Continuous-time evolution representation)BJ Subway/NYC-TaxiMulti- Head Attention
      HMOD[83]Graph (Event)Graph embedded /Random walkGRU/CTDGNYC-Taxi/ Beijing MetroNone
      SIZINB-GNN[84]GraphGNNTCNCDP datasetNone
      ODformer[86]Graph (Event)2DGCNODformerNYC taxiOD attention
      SI-GCN[87]Graph (Event)GCN (graph embedding)Encoder-decoderDIDI Beijinga mapping function
      STGDL[88]Graph (road)S-GCNResNet-based block ST-Conv CNNNYC taxi/DIDI Haikouboth short-term and long-term OD predictions
      CWGAN-div[89]Graph (road network)GANResNetNYC taxinetwork-wide OD demand
      DMGC-GAN[90]Graph (neighbor/
      mutual attraction/
      passengers' mobility
      association mode)
      GCNTMGCNNYC taxiNone
      Hex D-GCN[91]Graph (hexagon-based path)GCNCNNTaxi ShanghaiNone
      OD-TGAT[65]Graph (grid map)GATGRUNYC TaxiNone
      TFF[92]GraphGCNST-Attention blockChongqingA modified Kalman filter (KF)
      CSGCN[93]GraphGCNCNNTaxi BeijingShifted Graph Clustering
      gHMC-STA[94]GraphGCNMulti-Head ConvolutionTaxi BeijingGraph multi-head convolution for spatio-temporal aggregation
      HSTN[95]RasterSeparable 2D-CNNResNetTaxi ShanghaiNone
      CTBGCN[96]Graph2DGCNConv-LSTMNYC TaxiNone
      CT-GCN[97]GraphGCNST blockDIDI HaikouNone

      Table 1. 

      Summary of deep learning models in taxi origin-destination prediction.

    • ModelDynamic/StaticDirected/UndirectedTime windowSparse dataSpatial-temporal correlation
      GEML[74]StaticFluid relationship but undirectedDiscrete-time snapshots with the same time granularityMulti-granularity level mesh embedding/pre-weighted aggregatorNone
      MultiConvLSTM[72]Dynamic and StaticUndirectedDiscrete-time snapshots with the same time granularitySelf-attentionNone
      CLTS[73]DynamicUndirectedDiscrete-time snapshots with the same time granularityNoneNone
      CSTN[71]StaticUndirectedDiscrete-time snapshots with the same time granularityNoneNone
      CAS-CNN[76]StaticUndirectedDiscrete-time snapshots with the same time granularitySplit the CNN/masking loss functionNone
      MPGCN[77]Two static adjacency matrices and one dynamic adjacencyUndirectedDiscrete-time snapshots with the same time granularityNoneSpatiotemporal dynamic adjacency matrix
      GCN-SBULSTM[78]StaticUndirectedDiscrete-time snapshots with the same time granularityNoneNone
      ST-ED-RMGC[79]StaticUndirectedDiscrete-time snapshots with the same time granularityNoneParallel prediction
      DNEAT[80]Dynamic and StaticDirectedDiscrete-time snapshots of different time granularitiesThe loss function $ \mathcal{l} $ jointly minimizes the $ {\mathcal{l}}_{reg} $ and $ {\mathcal{l}}_{mask} $ masksNone
      Spatial OD-BiConvLSTM[81]DynamicUndirectedDiscrete-time snapshots (sliding window)The loss function $ \mathcal{l} $None
      CMOD[82]DynamicUndirectedContinuous dynamic timeThe loss function focuses on non-zero demandNode embedding
      HMOD[83]Dynamic and StaticDirected and semantically differentiatedContinuous dynamic timeNoneNode embedding
      SIZINB-GNN[84]StaticUndirectedDiscrete-time snapshots with the same time granularityZero expansion negative binomial distribution/probability of learning input being zero additive parameter $ \pi $None
      ODformer[86]StaticDirectedLong sequence time windowTransformerSpatial-Temporal Transformers
      SI-GCN[87]DynamicDirectedContinuous dynamic timeNegative samplingdata imputation,
      STGDL[88]StaticDirectedDiscrete-time snapshots (sliding window)Two gate mechanismsST-GDL model
      CWGAN-div[89]Dynamic and StaticUndirectedDiscrete-time snapshots (moving average)Residual blocksInterpretable conditional information
      DMGC-GAN[90]Dynamic and StaticDirectedDiscrete-time snapshots (sliding window)GANTMGCN
      Hex D-GCN[91]DynamicUndirectedDiscrete-time snapshots (moving average)Filling the lower triangle matrixNone
      OD-TGAT[65]StaticDirectedDiscrete-time snapshots (sliding window)GATNone
      TFF[92]DynamicDirectedDiscrete-time snapshots (moving average)Two-step design performsNone
      CSGCN[93]StaticDirectedDiscrete-time snapshots (sliding window)NoneNone
      gHMC-STA[94]StaticDirectedDiscrete-time snapshots (sliding window)NoneNone
      HSTN[95]StaticDirectedDiscrete-time snapshots (moving average)NoneNone
      CTBGCN[96]StaticDirectedDiscrete-time snapshots (sliding window)NoneNone
      CT-GCN[97]StaticDirectedDiscrete-time snapshots (sliding window)NoneNone

      Table 2. 

      Summary of problem solving in taxi origin-destination prediction.

    • DatasetLinks
      NYC-Taxihttps://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
      Porto
      T-drive (Beijing)https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
      Taxi-Shanghai
      Taxi-Shenzhenhttps://opendata.sz.gov.cn/
      Taxi-Chengduhttps://tianchi.aliyun.com/dataset/39384

      Table 3. 

      Open taxi datasets.

    • ModelGithub
      GEMLhttps://github.com/Zekun-Cai/GEML-Origin-Destination-Matrix-Prediction-via-Graph-Convolution
      CSTNhttps://github.com/liulingbo918/CSTN
      FL-GCNhttps://github.com/alzmxx/OD_Prediction
      MPGCNhttps://github.com/underdoc-wang/MPGCN
      ST-ED-RMGChttps://github.com/kejintao/ST-ED-RMGC/tree/main/od_prediction
      CMODhttps://github.com/liangzhehan/cmod
      HMODhttps://github.com/Rising0321/HMOD
      SIZINB-GNNhttps://github.com/zhuangdingyi/stzinb

      Table 4. 

      Open-source codes.