Figures (5)  Tables (3)
    • Figure 1. 

      Effect of reduced nitrogen fertilizer application combined with biochar on nitrogen content of different forms in flue-cured tobacco cultivated soils.

    • Figure 2. 

      Difference of nitrogen cycle function gene abundance among different treatments and control.

    • Figure 3. 

      Random forest model predicts the relevance of nitrogen cycle functional genes on nitrogen uptake efficiency in flue-cured tobacco. Note: The precision importance measures were calculated for each tree in a random forest and averaged over the entire forest. The percentage increase in the mean squared error (MSE) of the variables was used to estimate the importance of these predictors.

    • Figure 4. 

      Regression analysis on different forms of nitrogen content and nitrogen accumulation, absorption and utilization efficiency in soil.

    • Figure 5. 

      Mantel test of different forms of nitrogen content and nitrogen cycle function gene abundance.

    • YearTreatmentLeaf (kg·ha−1)Stem (kg·ha−1)Root (kg·ha−1)Whole plant (kg·ha−1)Nitrogen uptake efficiency (%)Nitrogen harvest index
      2021N020.98d9.76d9.12c39.86f
      T034.56c18.46c21.04b74.07e26.83c0.47c
      T155.80a25.60a29.76a111.16a55.93a0.50b
      T256.17a24.76a23.18ab104.06b55.95a0.54a
      T349.03b24.31a22.39b95.73c54.78a0.51ab
      T442.80b21.48b20.78b85.06d50.64b0.50b
      2022N019.21d5.99c6.04e31.23e
      T032.68c19.15ab17.43c69.26d29.83d0.47c
      T148.32a23.20a22.09a93.61a49.71a0.52b
      T246.79a20.35b19.20b86.33b48.02a0.54a
      T344.87a18.66ab17.56bc81.10c48.89a0.55a
      T436.29b18.10b15.11d69.49d42.87c0.52b
      Year(Y)************
      Treatment (T)************
      Y × TNS**NS****NS
      Note: Nitrogen uptake efficiency for the T0, T1, T2, T3, and T4 treatments was calculated using N0 as the control. Different lowercase letters in the same column of the table indicate the difference between treatments at 0.05 level in the same year (p < 0.05), the same was applied in Table 2 . '*' indicates a significant difference at 0.05 level; '**' indicates a highly significant difference at 0.01 level; NS indicates no significant differences at 0.05 level. Nitrogen accumulation in leaves includes nitrogen in the topped leaves.

      Table 1. 

      Effect of reduced nitrogen fertilizer application combined with biochar on nitrogen accumulation and utilization in flue-cured tobacco.

    • YearTreatmentpHSoil organic matter
      (g·kg−1)
      Bulk density
      (g·cm−3)
      Porosity
      (%)
      Field moisture capacity
      (%)
      2021T04.96c29.07b1.34a49.44b33.70b
      T15.16a31.98a1.14b57.19a49.00a
      T25.18a31.32a1.12b57.99a47.33a
      T35.16a31.48a1.13b57.34a46.89a
      T45.15a31.40a1.12b57.74a44.23a
      2022T04.98c28.89b1.37a48.43b34.57b
      T15.15a31.76a1.18b55.45a47.00a
      T25.14a31.93a1.17b55.98a47.66a
      T35.17a31.41a1.14b56.79a46.56a
      T45.17a31.15a1.13b57.22a43.90a

      Table 2. 

      Effect of reduced nitrogen fertilizer application combined with biochar on physicochemical properties in flue-cured tobacco cultivated soils.

    • Dependent variableExplanatory variableR2P-value
      AOA-amoABulk density, pH0.78<0.01
      AOB-amoAOrganic matter0.75<0.01
      narGpH, field moisture capacity0.85<0.01
      nirSNA
      norBpH0.68<0.01
      nosZNA
      gdhOrganic matter0.41<0.05
      UreCNA
      nxrAOrganic matter, bulk density, porosity0.56<0.01
      nifHOrganic matter0.47<0.01
      Only explanatory variables with p < 0.05 are shown in the table. NA represents no best fit model, and R2 represents the proportion of variance explained by the model.

      Table 3. 

      Soil physicochemical factors significantly related to the abundance of nitrogen cycle functional genes (screened by stepwise multiple regression).