Figures (8)  Tables (4)
    • Figure 1. 

      Geographical distribution of lotus accessions collected in the Wuhan National Lotus Germplasm Bank at the Wuhan Botanical Garden of the Chinese Academy of Sciences. The different colored dots indicate cultivars belonging to different categories.

    • Figure 2. 

      1-Benzylisoquinoline alkaloids reported in Nelumbo nucifera.

    • Figure 3. 

      Aporphine-type alkaloids isolated from Nelumbo nucifera.

    • Figure 4. 

      Bis- and tri- benzylisoquinoline alkaloids isolated from Nelumbo nucifera.

    • Figure 5. 

      BIA profiles in the leaf and plumule during development. (a) Lotus leaves showing the seven defined developmental stages. (b) BIA profiles in the seven leaf developmental stages. (c) Lotus plumules showing different developmental stages. (d) BIA content in the plumule at different developmental stages. S, leaf developmental stages; DAP, days post pollination. The figure is modified from previous reports[11,24].

    • Figure 6. 

      Analytical mass spectra of lotus leaf BIAs and their fragmentation pathways. The chemical structures and the corresponding peak numbers 1 to 5 represent signals for N-nornuciferine, O-nornuciferine, anonaine, nuciferine, and Roemerine, respectively. Figures are modified from Luo et al. [65] and Chen et al. [23].

    • Figure 7. 

      Analytical mass spectra of lotus leaf BIAs and their fragmentation pathways. The chemical structures and the corresponding peak numbers 6 to 8 represent signals for liensinine, isoliensinine, and neferine, respectively. Figures are modified from Chen et al. [64], Deng et al. [11], and Lai et al. [66].

    • Figure 8. 

      Proposed BIAs biosynthetic pathway in lotus. Steps marked with red, green, and purple background represent the common reactions for the biosynthesis of (R)-N-Methylcoclaurine, the lotus aporphine branch, and the bis-BIA biosynthesis branch, respectively. All biosynthetic enzymes are shown in red. The (R)-N-Methylcoclaurine is the branch point for aporphine and bis-BIA biosynthesis in lotus. Dotted arrows indicate multiple enzymatic or unknown steps.

    • No.AlkaloidFormulaEnantiomerOrganReference
      1-BENZYLISOQUINOLINE
      1LotusineC19H24NO3+E, S, F[25]
      2Methyl lotusineL
      3ArmepavineC19H23NO3(−)-R and (+)-SS, F, L[21]
      4CoclaurineC17H19NO3(+)-RS, L[26]
      5N-norarmepavineC18H21NO3(+)-RL[27]
      6N-methylisococlaurineC18H21NO3L[16,28]
      7N-methylcoclaurineC18H21NO3(−)-RL, S[16]
      8IsococlaurineC19H24NO3+L
      9MethylhigenamineS[17]
      10Norcoclaurine-6-O-glucosideS
      11NorcoclaurineC16H17NO3(+)-R and (+)-SS, L[26,29]
      12ArgemexirineS, L
      136-demethy-4-methyl-N-methylcoclaurineC18H21NO3S[30]
      14Nor-O-methylarmepavineC20H25NO3S[30]
      154’-N-methylcoclaurineC19H23NO3L, S[17]
      164’-methyl coclaurineL, S[17]
      17Bromo methyl armepavineL, S[17]
      18Methoxymethy lisoquinolineL, S[17]
      19HigenamineP[31,32]
      20Higenamine glucosideP[33]
      APORPHINE
      21NuciferineC19H21NO2(−)-RS, F, L[34,35]
      22N-nornuciferineC18H19NO2(−)-RS, L[26]
      23RoemerineC18H17NO2(−)-RS, F, L[16,26,32]
      24O-nornuciferineC18H19NO2(−)-RS, F, L[32,36]
      25AnonaineC17H15NO2(−)-RS, L[16,26]
      26LirinidineC18H19NO2(−)-RS, L[37]
      27Nuciferine-N-MethanolF
      28Nuciferine-N-AcetylF
      29Anonaine-N-AcetylF
      30CaaverineC17H17NO2(−)-RS, L[20,38]
      31Oxidation-nuciferineS, L, F[19,30]
      32AsimilobineC17H17NO2(−)-RS, F, L[17,20]
      33Methyl asimilobineS, L[17]
      34N-methyl asimilobineS, L[16,39]
      35Roemerine-N-oxideS, L[16,40]
      36N-methyl asimilobine-N-oxideS, L, F[16,19]
      37Nuciferine-N-oxideS, L, F[16,19]
      38DehydroanonaineC17H13NO2L[16]
      39DehydronuciferineC19H19NO2L[16]
      40DehydroaporphineC18H15NO2L[41]
      41NelumnucineS, L
      42DehydroroemerineL[16]
      43LiriodenineC17H9NO3L[16,40]
      447-hydroxydehy dronuciferineC19H19NO3L[16]
      45PronuciferineC19H21NO3(+)-R and (−)-SS, F, L[16,26,40]
      46GlaziovineS
      47LysicamineC18H13NO3L[38,42]
      48CepharadioneL[38]
      BISBENZYLISOQUINOLINE
      49NeferineC38H44N2O61R, 1'SS, F, E[17,31]
      50LiensinineC37H42N2O61R, 1'RS, F, E[35]
      51Isoliensinine1R, 1'SS, F, E[25]
      52N-norisoliensinineC36H40N2O6S, F, E[25]
      536-hydroxynorisoliensinineC36H40N2O6S, F, E
      54Methyl neferineS, E[10,17]
      55NelumboferineC36H40N2O6S, E[10,17]
      56NegferineC38H44N2O6L[17,26]
      57NelumborineF[17]
      58DauricineS, F[43]
      TRIBENZYLISOQUINOLINE
      59NeoliensinineC63H70N3O101R, 1'S, 1''RE[44]
      L, Leaf; E, embryo; F, flowers; S, seeds; R, rhizome; LS: leaf sap; NS, not specified.

      Table 1. 

      BIAs detected in the lotus (Nelumbo nucifera) tissues. Alkaloids are assigned with numbers as shown in Figures 25.

    • Extraction methodContent (mg/g dry weight)aTotal
      12345678910
      Methanol, reflux1.76 (100)1.75 (100)0.07 (100)0.63 (100)0.69 (100)0.83 (100)1.45 (100)5.73 (100)1.30 (100)0.75 (100)14.96 (100)
      50% Methanol, reflux1.09 (62)1.35 (77)0.05 (71)0.50 (79)0.61 (88)0.78 (94)1.35 (93)3.79 (66)0.94 (73)0.56 (75)11.02 (74)
      H2O, reflux0.24 (14)0.35 (20)nd.b0.21 (33)0.18 (26)0.38 (45)0.78 (54)2.57 (45)0.66 (51)0.29 (38)5.66 (38)
      Methanol, sonication0.88 (50)1.11 (64)0.03 (44)0.39 (62)0.33 (48)0.47 (56)0.97 (67)2.77 (48)0.70 (54)0.42 (56)8.07 (54)
      50% Methanol, sonication0.98 (56)1.27 (73)0.04 (58)0.49 (78)0.47 (69)0.80 (96)1.38 (95)3.93 (69)0.97 (75)0.59 (79)10.92 (73)
      H2O, sonication0.14 (8)0.21 (12)nd.0.12 (20)0.08 (11)0.25 (30)0.53 (37)1.91 (33)0.48 (37)0.19 (26)3.91 (26)
      1. nuciferine; 2. N-nornuciferine; 3. N-methylasimilobine; 4. Asimilobine; 5. Pronuciferine; 6. Armepavine; 7. norarmepavine; 8. N-methylcoclaurine; 9. coclaurine; 10. Norjuziphine. a. relative value (%) against the content obtained by methanol under reflux is given in parentheses. b. less than the quantitation limit.

      Table 2. 

      Extraction efficiency of alkaloids from lotus flower.

    • Solvent systemsMix ratios (v/v)Target BIAsReference
      Light petroleum (60–90 °C)–ethyl acetate–tetrachloromethane–chloroform–methanol–water1:1:4:4:6:2Small scale
      Plumule BIAs
      [59]
      Ethyl acetate–tetrachloromethane–chloroform–methanol–water1:6:4:1Small scale
      Plumule BIAs
      [59]
      n-hexane–ethyl acetate–methanol–water5:8:4:5
      0.5% NH4OH
      Plumule BIAs[60]
      n-hexane–ethyl acetate–methanol–water5:5:2:8
      10 mM triethylamine
      5 mM HCl
      Plumule BIAs[57]
      Diethyl ether – Na2HPO4/NaH2PO4 (pH = 7.2 – 7.5)1:1Plumule BIAs[62]
      Petroleum ether (60–90 °C)–ethyl acetate–methanol–water5:5:2:8
      10 mM triethylamine
      5 mM HCl
      Leaf BIAs[61]
      n-hexane-ethyl acetate-methanol-water-[C4mim][PF6]5:2:2:8:0.1
      10 mM triethylamine
      3 mM HCl
      Whole plant BIAs[35]

      Table 3. 

      Major two-phase solvent systems developed for preparative separation of lotus BIAs through counter-current chromatography (CCC) techniques.

    • PeaksTRa (min)Molecular weightm/z
      [M + H]+
      Major fragment ionsAlkaloids
      1*7.56281282251/219N-nornuciferine
      2*9.03281282265/250O-nornuciferine
      3*10.17265266249/219Anonaine
      4*12.43295296265/250Nuciferine
      5*13.39279280249Roemerine
      66.61610611503/283/206Liensinine
      79.47610611489/297/192Isoliensinine
      817.72624625503/297/206Neferine
      * The retention time (TRa (min) of peaks 1–5 as obtained by Chen et al.[23].
      ∆ The retention time of peaks 6–9 as reported by Chen et al.[63].

      Table 4. 

      Identification of major lotus leaf and plumule alkaloids and their HPLC-MS/MS ion characteristics.