Figures (5)  Tables (2)
    • Figure 1. 

      Regulation mechanism of leaf senescence in Medicago truncatula L.

    • Figure 2. 

      Regulation mechanism of leaf senescence in Medicago sativa L.

    • Figure 3. 

      Mechanism of exogenous hormone application regulating leaf senescence of Lolium perenne L.

    • Figure 4. 

      Regulation mechanism of leaf senescence in Lolium perenne L.

    • Figure 5. 

      Regulation mechanism of leaf senescence in Panicum virgatum.

    • ReagentsTreatmentEffectsRef.
      AminoethoxyvinylglycineHeatRegulating chlorophyll metabolic activities[88, 111]
      Protease inhibitors in the cysteine, serine, or aspartic classesSuppressing proteolysis[112]
      GlutamateSuppressing chlorophyll degradation.
      Activating amino acid metabolism involved in energy production, antioxidant defense, and nitrogen balance
      [113]
      β-sitosterolAlleviating the membrane lipid peroxidation and the enzymatic antioxidant system[114]
      ChitosanUp-regulating chlorophyll biosynthesis related genes.
      Down-regulating chlorophyll degradation and senescence related genes
      Increasing the activity of antioxidant enzymes
      [115]
      SpermineMaintaining higher chlorophyll content, net photosynthetic rate, photochemical efficiency, and performance index on absorption basis.
      Promoting osmotic adjustment ability and antioxidant enzyme activities to enhance the scavenging capacity of reactive oxygen species.
      Upregulating transcriptions of heat shock protein genes helping to maintain normal synthesis and functions of proteins
      [116]
      Biostimulants (TurfVigor and CPR)Promoting both shoot and root growth[117]
      Trinexapac-ethylImproving the chlorophyll content and photosynthetic rate[117]
      γ-aminobutyric acid, proline, and ammonium nitrateEnhancing chlorophyll content and photochemical efficiency.
      Suppressing chlorophyll-degrading enzyme activities under heat stress
      [118]
      NitrogenEnhancing protein abundance in photosynthesis and amino acid metabolism and stress defense systems (heat shock protection and antioxidants)[89]
      Zeatin ribosideReducing heat-induced membrane lipid peroxidation
      Reducing protease activity.
      Maintaining higher leaf chlorophyll content, Fv/Fm, soluble protein content and antioxidant enzyme activity
      [84,8789]
      γ-Aminobutyric acidDroughtPromoting energy production and conversion, antioxidant defense, and DHN3 accumulation[119]
      MelatoninIncreasing photochemical efficiency, chlorophyll content and relative water content.
      Suppressing leaf electrolyte leakage, lipid peroxidation and hydrogen peroxide production.
      Up-regulating the cytokinin-signaling and synthesis genes.
      Down-regulating the chlorophyll-degradation genes and enzyme activities
      [120]

      Table 1. 

      Mechanism of exogenous application of various reagents to inhibit leaf senescence of creeping glumes.

    • GeneSpeciesEffectRef.
      Medicago truncatulaPromote[54]
      Medicago sativaPromote[54]
      SGRLolium perennePromote (except heat stress)[71]
      Agrostis stoloniferaPromote[102]
      Zoysia japonicaPromote[109]
      IPTMedicago sativaDelay[58]
      Agrostis stoloniferaDelay[90,91]
      Tdp1αMedicago truncatulaDelay[56]
      TMTMedicago sativaDelay[59]
      miR156Medicago sativaDelay[60]
      SPL9Medicago sativaPromote[61]
      SAG113Medicago sativaPromote[62]
      NYC1Lolium perennePromote[72]
      Zoysia japonicaPromote[110]
      NOLLolium perennePromote[73,74,75]
      Zoysia japonicaPromote[107,108]
      PPHLolium perennePromote[76]
      Zoysia japonicaPromote[106]
      NALLolium perenneDelay[73]
      NAC1Panicum virgatumPromote[81]
      NAC2Panicum virgatumPromote[81]
      SSGPanicum virgatumDelay[83]

      Table 2. 

      List of the gene involved in leaf senescence in grass.