Figures (2)  Tables (2)
    • Figure 1. 

      Biogenesis of model miRNAs in plants. MIR genes are initially transcribed by RNA Pol II into pri-miRNAs, which then adopt hairpin structures through self-folding. The subsequent processing and splicing of miRNAs require the interaction of DDL, HYL1, SE, and TGH in conjunction with the cap-binding complex (CBC). DCL1 processes both pri-miRNAs and pre-miRNAs, generating one or several miRNA/miRNA* duplexes, subsequently methylated by HEN1. These processed miRNAs are transported to the cytoplasm by HST1. Subsequent processing involves the integration of the selected miRNAs into the RISC, which comprises AGO1. This complex guide either the inhibition of translation or the cleavage of the target mRNA transcript. AGO, Argonaute; DCL, Dicer-like; HYL1, HYPONASTIC LEAVES1; Pol II, RNA polymerase II; HEN1, HUA ENHANCER 1; CBC, cap-binding complex; MIR, MIRNA; RISC, RNA-induced silencing complex; miRNA, microRNA; mRNA, messenger RNA; SE, SERRATE.

    • Figure 2. 

      MicroRNAs play pivotal role in development and stress responses in grasses. Recent understanding of miRNA-mediated regulation is outlined, encompassing development (inner circle) and responses to biotic and abiotic stresses (outer circle) in grasses. Bdi, Brachypodium distachyon; Msa, Medicago sativa; Pvi, Panicum virgatum; Pla, Paeonia lactiflora; Agr, Apium graveolens; Lpe, Lolium perenne; Hvu, Hordeum vulgare; Aca, Agrostis canina; Cda, Cynodon dactylon; Dgl, Dactylis glomerata; Mru, Medicago ruthenica, and Mtr, Medicago truncatula.

    • miRNASpeciesTarget mRNABiological functionRef.
      Bdi-miR156Brachypodium distachyonBdSPLRoot development/Leaf development/Flowering[25]
      Aca-miR159Agrostis caninaAcARFRoot development/Vasculature[52]
      Dgi-miR396Dactylis glomerataDgGRFVasculature/Leaf development[63]
      Pvi-miR528Panicum virgatumPvSODTillering[33]
      Pvi-miR156Panicum virgatumPvSPLTillering[24,25]
      Pvi-miR529Panicum virgatumPvSPLTillering[24]
      Bdi-miR319Brachypodium distachyonBdTCPTillering/Panicle[61]
      Pvi-miR396Panicum virgatumPvGRFPanicle[37]
      Pvi-miR172Panicum virgatumPvAP2Panicle[24,25,27]
      Bdi-miR396Brachypodium distachyonBdGRFLeaf development/Hormone response[37]
      Bdi-miR5200Brachypodium distachyonBdFTFlowering[35]
      Hvu-miR171Hordeum vulgareHvSCLFlowering[26]
      Pax-miR172petuniaPaSPLFlowering[27]

      Table 1. 

      List of miRNAs involved in grasses development.

    • miRNASpeciesTarget mRNABiological functionRef.
      Bdi-miR396Brachypodium distachyonBdGRFSalt[37]
      Dgl-miR528Dactylis glomerataDgHAK5Salt/Drought/Immune response/Heavy metals[33]
      Mtr-miR171fMedicago truncatulaMtPTPRCSalt[52]
      Dgl-miR167Dactylis glomerataDgARFCold[63]
      Bdi-miR156Brachypodium distachyonBdVIL4Cold[62]
      Dgl-miR395Dactylis glomerataDgABARCold[58]
      Dgl-miR396Dactylis glomerataDgGRFCold[37]
      Bdi-miR528Brachypodium distachyonBdE3UBIDrought/Nutrient deficiency/Heavy metals[56]
      Msa-miR156Medicago sativaMsSPL13Drought[60]
      Msa-miR156Medicago sativaMsWD40-1Drought[60]
      Mru-miR319Medicago ruthenicaMrTCP4Drought[61]
      Lpe-miR397Lolium perenneLpLACHeat[51]
      Lpe-miR408Lolium perenneLpLAC3Heat[50]
      Pla-miR408Paeonia lactifloraPlLACHeat[47]
      Pvi-miR397Panicum virgatumPvLACImmune response[51]
      Msa-miR396Medicago sativaMsGRFImmune response[43]
      Pvi-miR528Panicum virgatumPvSODImmune response[33]
      Dgl-miR530Dactylis glomerataDgENO1Nutrient deficiency[63]
      Msa-miR156Medicago sativaMsSPLNutrient deficiency[44]
      Mtr-miR2111Medicago truncatulaMtCLE35Nutrient deficiency[14]
      Mtr-miR156g-3pMedicago truncatulaMtGRASNutrient deficiency[45]
      Bdi-miR397Brachypodium distachyonBdLACHeavy metals[51]
      Bdi-miR408Brachypodium distachyonBdARPNHeavy metals[51,59]

      Table 2. 

      List of miRNAs involved in responses to biotic and abiotic stresses.