[1] Li Wx, Yang Sx, Lu Z, He Zc, Ye Yl, et al. 2018. Cytological physiological and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Hortic. Research 5:12 doi: 10.1038/s41438-018-0015-4
[2] Bi W, Gao Y, Shen J, He C, Liu H, et al. 2016. PG Traditional uses phytochemistry and pharmacology of the genus Acer (maple): A review. Journal of Ethnopharmacology 189:31−60 doi: 10.1016/j.jep.2016.04.021
[3] Koyama T. 2018. A hidden link between leaf development and senescence. Plant Science 276:105−10 doi: 10.1016/j.plantsci.2018.08.006
[4] Feild TS, Lee DW, Holbrook NM. 2001. Why Leaves Turn Red in Autumn The Role of Anthocyanins in Senescing Leaves of Red-Osier Dogwood. Plant Physiology 127:566−74 doi: 10.1104/pp.010063
[5] Chen Z, Lu XY, Xuan Y, Tang F, Wang JJ, et al. 2019. Transcriptome analysis based on a combination of sequencing platforms provides insights into leaf pigmentation in Acer rubrum. BMC Plant Biology 19:240 doi: 10.1186/s12870-019-1850-7
[6] Wang H, Wang X, Song W, Bao Y, Jin Y, et al. 2019. PdMYB118 isolated from a red leaf mutant of Populus deltoids is a new transcription factor regulating anthocyanin biosynthesis in poplar. Plant Cell Reports 38:927−36 doi: 10.1007/s00299-019-02413-1
[7] Wu Y, Guo J, Wang T, Cao F, Wang G. 2019. Transcriptional profiling of long noncoding RNAs associated with leaf-color mutation in Ginkgo biloba L. BMC Plant Biology 19:527 doi: 10.1186/s12870-019-2141-z
[8] Zhang G, Chen D, Zhang T, Duan A, Zhang J, et al. 2018. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Research 25:465−76 doi: 10.1093/dnares/dsy017
[9] Schelbert S, Aubry S, Burla B, Agne B, Kessler F, et al. 2009. Pheophytin Pheophorbide Hydrolase (Pheophytinase) Is Involved in Chlorophyll Breakdown during Leaf Senescence in Arabidopsis. Plant Cell 21:767−85 doi: 10.1105/tpc.108.064089
[10] Guyer L, Hofstetter SS, Christ B, Lira BS, Rossi M, et al. 2014. Different Mechanisms Are Responsible for Chlorophyll Dephytylation during Fruit Ripening and Leaf Senescence in Tomato. Plant Physiology 166:44−56 doi: 10.1104/pp.114.239541
[11] Eckhardt U, Grimm B, Hörtensteiner S. 2004. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology 56:1−14 doi: 10.1007/s11103-004-2331-3
[12] Nagata N, Tanaka R, Satoh S, Tanaka A. 2005. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233−40 doi: 10.1105/tpc.104.027276
[13] Tanaka Y, Ohmiya A. 2008. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Current Opinion in Biotechnology 19:190−7 doi: 10.1016/j.copbio.2008.02.015
[14] Isaacson T, Ronen G, Zamir D, Hirschberg J. 2002. Cloning of tangerine from Tomato Reveals a Carotenoid Isomerase Essential for the Production of beta-Carotene and Xanthophylls in Plants. Plant Cell 14:333−42 doi: 10.1105/tpc.010303
[15] Hu L, Zhang H, Xie C, Wang J, Zhang J, et al. 2020. A mutation in CsHD encoding a histidine and aspartic acid domain-containing protein leads to yellow young leaf-1 (yyl-1) in cucumber (Cucumis sativus L.). Plant Science 293:9 doi: 10.1016/j.plantsci.2020.110407
[16] Du W, Hu F, Yuan S, Liu C. 2020. The identification of key candidate genes mediating yellow seedling lethality in a Lilium regale mutant. Molecular Biology Reports 47:2487−99 doi: 10.1007/s11033-020-05323-8
[17] Smolikova G, Shiroglazova O, Vinogradova G, Leppyanen I, Dinastiya E, et al. 2020. Comparative analysis of the plastid conversion photochemical activity and chlorophyll degradation in developing embryos of green-seeded and yellow-seeded pea (Pisum sativum) cultivars. Functional Plant Biology 47:409−24 doi: 10.1071/FP19270
[18] Azarin K, Usatov A, Makarenko M, Kozel N, Kovalevich A, et al. 2020. A point mutation in the photosystem I P700 chlorophyll a apoprotein A1 gene confers variegation in Helianthus annuus L. Plant Molecular Biology 103:373−89 doi: 10.1007/s11103-020-00997-x
[19] Rani MH, Liu QN, Yu N, Zhang YX, Wang BF, et al. 2020. ES5 is involved in the regulation of phosphatidylserine synthesis and impacts on early senescence in rice (Oryza sativa L.). Plant Molecular Biology 102:501−15 doi: 10.1007/s11103-019-00961-4
[20] Dooner HK, Robbins TP, Jorgensen RA. 1991. Genetic and developmental control of anthocyanin biosynthesis. Annual Review of Genetics 25:173−99 doi: 10.1146/annurev.ge.25.120191.001133
[21] Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M. 2004. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science 167:247−52 doi: 10.1016/j.plantsci.2004.03.021
[22] Cho K, Cho KS, Sohn HB, Ha IJ, Hong SY, et al. 2016. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. Journal of Experimental Botany 67:1519−33 doi: 10.1093/jxb/erv549
[23] Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18:477−83 doi: 10.1016/j.tplants.2013.06.003
[24] Alcalde-Eon C, García-Estévez I, Rivas-Gonzalo JC, Rodríguez de la Cruz D, Escribano-Bailón MT. 2016. Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L. Differentiation between Populus nigra, Populus alba and Populus tremula. Phytochemistry 128:35−49 doi: 10.1016/j.phytochem.2016.04.004
[25] Zhang Q, Wang L, Liu Z, Zhao Z, Zhao J, et al. 2020. Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration. Food Chemistry 312:125903 doi: 10.1016/j.foodchem.2019.125903
[26] Han M, Yang C, Zhou J, Zhu J, Meng J, et al. 2020. Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Brazilian Journal of Botany 43:81−9 doi: 10.1007/s40415-020-00590-y
[27] Gao J, Zhang Y, Wang C, Zhang S, Qi L, et al. 2009. AFLP fingerprinting of Populus deltoides and Populus x canadensis elite accessions. New Forests 37:333−44 doi: 10.1007/s11056-008-9127-2
[28] Ohtsuka Y, Sakai M, Seki T, Ohnuki R, Yoshioka S, et al. 2020. Stimuli-Responsive Structural Colored Gel That Exhibits the Three Primary Colors of Light by Using Multiple Photonic Band Gaps Acquired from Photonic Balls. ACS Appl. Mater. Interfaces 12:54127−37 doi: 10.1021/acsami.0c17687
[29] Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A. 2011. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis. Plant Cell 23:3442−53 doi: 10.1105/tpc.111.089714
[30] Sakuraba Y, Kim YS, Yoo SC, Hortensteiner S, Paek NC. 2013. 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochemical and Biophysical Research Communications 430:32−7 doi: 10.1016/j.bbrc.2012.11.050
[31] Hörtensteiner S. 2012. Update on the biochemistry of chlorophyll breakdown. Plant Molecular Biology 82:505−17 doi: 10.1007/s11103-012-9940-z
[32] Cunningham FX, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 49:557−83 doi: 10.1146/annurev.arplant.49.1.557
[33] Havaux M, Dall'Osto L, Cuiné S, Giuliano G, Bassi R. 2004. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. The Journal of Biological Chemistry 279:13878−88 doi: 10.1074/jbc.M311154200
[34] Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, et al. 2006. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiology 140:558−79 doi: 10.1104/pp.105.074971
[35] Xue Q, Fan H, Yao F, Cao X, Liu M, et al. 2020. Transcriptomics and targeted metabolomics profilings for elucidation of pigmentation in Lonicera japonica flowers at different developmental stages. Industrial Crops and Products 145:111981 doi: 10.1016/j.indcrop.2019.111981
[36] Keskitalo J, Bergquist G, Gardeström P, Jansson S. 2005. A cellular timetable of autumn senescence. Plant Physiology 139:1635−48 doi: 10.1104/pp.105.066845
[37] Lee DW, O’Keefe J, Holbrook NM, et al. 2003. Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecological Research 18:677−94 doi: 10.1111/j.1440-1703.2003.00588.x
[38] Andersson A, Keskitalo J, Sjödin A, et al. 2004. A transcriptional timetable of autumn senescence. Genome Biology 5:R24 doi: 10.1186/gb-2004-5-4-r24
[39] Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Björkbacka H, et al. 2003. Gene expression in autumn leaves. Plant Physiology 131(2):430−42 doi: 10.1104/pp.012732
[40] Vidović M, Morina F, Milić-Komić S, Vuleta A, Zechmann B, et al. 2016. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants. Journal of Plant Biology 18:669−80 doi: 10.1111/plb.12429
[41] Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. 2014. Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany 65(14):3799−811 doi: 10.1093/jxb/eru039
[42] Li Z, Woo HR, Guo H. 2018. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. Journal of Experimental Botany 69(4):811−23 doi: 10.1093/jxb/erx345
[43] Tan BC, Cline K, McCarty DR. 2001. Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. The Plant Journal 27:373−82 doi: 10.1046/j.1365-313X.2001.01102.x
[44] Gomez-Lobato ME, Civello PM, Martínez GA. 2012. Effects of ethylene cytokinin and physical treatments on BoPaO gene expression of harvested broccoli. Journal of the Science of Food and Agriculture 92:151−8 doi: 10.1002/jsfa.4555
[45] Gray J, Close PS, Briggs SP, Johal GS. 1997. A Novel Suppressor of Cell Death in Plants Encoded by the Lls1 Gene of Maize. Cell 89:25−31 doi: 10.1016/S0092-8674(00)80179-8
[46] Ma N, Ma X, Li A, Cao X, Kong L. 2012. Cloning and Expression Analysis of Wheat Pheophorbide a Oxygenase Gene TaPaO. Plant Molecular Biology Reporter 30:1237−45 doi: 10.1007/s11105-012-0443-5
[47] Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, et al. 2012. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex Ⅱ for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24:507−18 doi: 10.1105/tpc.111.089474
[48] Yang M, Wardzala E, Johal GS, Gray J. 2004. The Wound-Inducible Lls1 Gene from Maize is an Orthologue of the Arabidopsis Acd1 Gene and the LLS1 Protein is Present in Non-Photosynthetic Tissues. Plant Molecular Biology 54:175−91 doi: 10.1023/B:PLAN.0000028789.51807.6a
[49] Lopez-Juez E, Pyke KA. 2005. Plastids unleashed: their development and their integration in plant development. The International Journal of Developmental Biology 49:557−77 doi: 10.1387/ijdb.051997el
[50] Cunningham Jr. FX, Pogson B, Sun Z, McDonald KA, DellaPenna D, et al. 1996. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613−26 doi: 10.1105/tpc.8.9.1613
[51] Sui X, Gao X, Ao M, et al. 2011. cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in Freesia hybrida. Plant Cell Reports 30:1209−18 doi: 10.1007/s00299-011-1029-7
[52] Rothenberg DO, Yang H, Chen M, Zhang W, Zhang L. 2019. Metabolome and Transcriptome Sequencing Analysis Reveals Anthocyanin Metabolism in Pink Flowers of Anthocyanin-Rich Tea (Camellia sinensis). Molecules 24:1064 doi: 10.3390/molecules24061064
[53] Lichtenthaler HK. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148:350−82 doi: 10.1016/0076-6879(87)48036-1
[54] Dai F, Li A, Rao S, Chen J. 2019. Potassium Transporter LrKUP8 Is Essential for K+ Preservation in Lycium ruthenicum, A Salt-Resistant Desert Shrub. Genes (Basel) 10:600 doi: 10.3390/genes10080600
[55] Chang S, Puryear J, Cairney J. 1993. A Simple and Efficient Method for Isolating RNA from Pine Trees. Plant Molecular Biology Reporter 11:113−6 doi: 10.1007/BF02670468
[56] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883
[57] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28:511−5 doi: 10.1038/nbt.1621
[58] Chen W, Gong L, Guo ZL, Wang WS, Zhang HY, et al. 2013. A novel integrated method for large-scale detection identification and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular plant 6:1769−80 doi: 10.1093/mp/sst080
[59] Shen J, Zhang D, Zhou L, Zhang X, Liao J, et al. 2019. Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. 'Suchazao' exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiology 39:1583−99 doi: 10.1093/treephys/tpz059
[60] Zhu G, Wang S, Huang Z, Zhang S, Liao Q, et al. 2018. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 172:249−61 doi: 10.1016/j.cell.2017.12.019
[61] Fraga CG, Clowers BH, Moore RJ, Zink EM. 2010. Signature-Discovery Approach for Sample Matching of a Nerve-Agent Precursor Using Liquid Chromatography-Mass Spectrometry XCMS and Chemometrics. Analytical Chemistry 82:4165−73 doi: 10.1021/ac1003568
[62] Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Method 25:402−8 doi: 10.1006/meth.2001.1262
[63] Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. 2008. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55:611−22 doi: 10.1373/clinchem.2008.112797
[64] Wang A, Li R, Ren L, Gao X, Zhang Y, et al. 2018. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chemistry 260:124−34 doi: 10.1016/j.foodchem.2018.03.125
[65] Howe EA, Sinha R, Schlauch D, Quackenbush J. 2011. RNA-Seq analysis in MeV. Bioinformatics 27:3209−10 doi: 10.1093/bioinformatics/btr490