[1] |
Chen T, He HL, Church GM. 1999. Modeling gene expression with differential equations. In Proceeding of the Pacific Symposium on Biocomputing 1999, 4:611. USA: World Scientific. pp.29−40 https://doi.org/10.1142/3925 |
[2] |
Kauffman S. 1969. Homeostasis and differentiation in random genetic control networks. Nature 224:177−8 doi: 10.1038/224177a0 |
[3] |
Chen BS, Chang CH, Wang YC, Wu CH, Lee HC. 2011. Robust model matching design methodology for a stochastic synthetic gene network. Math. Biosci. 230:23−36 doi: 10.1016/j.mbs.2010.12.007 |
[4] |
Friedman N, Nachman I, Pe'er D. 1999. Learning bayesian network structure from massive datasets: the "sparse candidate" algorithm. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI1999). pp. 206−15. Stockholm: Morgan Kaufmann Publishers Inc. |
[5] |
Friedman N, Linial M, Nachman I, Pe'er D. 2000. Using Bayesian networks to analyze expression data. Journal of Computational Biology 7:601−20 doi: 10.1089/106652700750050961 |
[6] |
Chai LE, Law CK, Mohamad MS, Chong CK, Choon YW, et al. 2014. Investigating the effects of imputation methods for modelling gene networks using a dynamic bayesian network from gene expression data. Malays J Med Sci 21:20−7 https://pubmed.ncbi.nlm.nih.gov/24876803/ |
[7] |
Exarchos TP, Rigas G, Goletsis Y, Stefanou K, Jacobs S, et al. 2014. A dynamic Bayesian network approach for time-specific survival probability prediction in patients after ventricular assist device implantation. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014, pp. 3172−5. USA: IEEE https://doi.org/doi:10.1109/EMBC.2014.6944296 |
[8] |
Cao J, Qi X, Zhao H. 2012. Modeling gene regulation networks using ordinary differential equations. In Next Generation Microarray Bioinformatics. Methods in Molecular Biology (Methods and Protocols), eds. Wang J, Tan AC, Tian T, vol 802. USA: Humana Press. pp: 185−97 https://doi.org/10.1007/978-1-61779-400-1_12 |
[9] |
Sima C, Hua J, Jung S. 2009. Inference of Gene Regulatory Networks Using Time-Series Data: A Survey. Current genomics 10:416−29 doi: 10.2174/138920209789177610 |
[10] |
de la Fuente A, Bing N, Hoeschele I, Mendes P. 2004. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20:3565−74 doi: 10.1093/bioinformatics/bth445 |
[11] |
Schäfer J, Strimmer K. 2005. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754−64 doi: 10.1093/bioinformatics/bti062 |
[12] |
Butte A, Kohane I. 2000. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. In Proceedings of Pacific Symposium on Biocomputing 2000, 5:704. USA: World Scientific. pp.415−26 https://doi.org/10.1142/4316 |
[13] |
Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. 2006. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7 doi: 10.1186/1471-2105-7-S1-S7 |
[14] |
Altay G, Emmert-Streib F. 2010. Inferring the conservative causal core of gene regulatory networks. BMC Systems Biology 4:132 doi: 10.1186/1752-0509-4-132 |
[15] |
Meyer PE, Lafitte F, Bontempi G. 2008. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9:461 doi: 10.1186/1471-2105-9-461 |
[16] |
Huynh-Thu VA, Geurts P. 2019. Unsupervised Gene Network Inference with Decision Trees and Random Forests. In Gene Regulatory Networks. Methods in Molecular Biology, eds. Sanguinetti G, Huynh-Thu VA, vol 1883. New York: Humana Press. pp. 195−215 https://doi.org/10.1007/978-1-4939-8882-2_8 |
[17] |
Deng W, Zhang K, Busov V, Wei H. 2017. Recursive random forest algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways. PLoS One 12:e0171532 doi: 10.1371/journal.pone.0171532 |
[18] |
Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. 2000. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. U. S. A. 97:12182−6 doi: 10.1073/pnas.220392197 |
[19] |
Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. 2007. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5:e8 doi: 10.1371/journal.pbio.0050008 |
[20] |
Meyer PE, Kontos K, Lafitte F, Bontempi G. 2007. Information-theoretic inference of large transcriptional regulatory networks. EURASIP journal on bioinformatics and systems biology 2007:79879 https://rdcu.be/chDK7 |
[21] |
Gunasekara C, Zhang K, Deng W, Brown L, Wei H. 2018. TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction. Nucleic Acids Res. 46:e67 doi: 10.1093/nar/gky210 |
[22] |
Zhang X, Zhao X, He K, Lu L, Cao Y, et al. 2012. Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28:98−104 doi: 10.1093/bioinformatics/btr626 |
[23] |
Meinshausen N, Bühlmann P. 2006. High-dimensional graphs and variable selection with the Lasso. Annals of statistics 34:1436−62 doi: 10.1214/009053606000000281 |
[24] |
Zhang X, Liu K, Liu Z, Duval B, Richer JM, et al. 2013. NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference. Bioinformatics 29:106−13 doi: 10.1093/bioinformatics/bts619 |
[25] |
Hayes AF, Cai L. 2007. Using heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementation. Behav. Res. Methods 39:709−22 doi: 10.3758/BF03192961 |
[26] |
Hoerl AE, Kennard RW. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12:55−67 doi: 10.1080/00401706.1970.10488634 |
[27] |
Tibshirani R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58:267−88 doi: 10.1111/j.2517-6161.1996.tb02080.x |
[28] |
Zou H. 2006. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101:1418−29 doi: 10.1198/016214506000000735 |
[29] |
Zou H, Hastie T. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67:301−20 doi: 10.1111/j.1467-9868.2005.00503.x |
[30] |
Wang H, Li G, Jiang G. 2007. Robust regression shrinkage and consistent variable selection through the LAD-Lasso. Journal of Business & Economic Statistics 25:347−55 doi: 10.1198/073500106000000251 |
[31] |
Yu C, Yao W. 2017. Robust linear regression: A review and comparison. Communications in Statistics - Simulation and Computation 46:6261−82 doi: 10.1080/03610918.2016.1202271 |
[32] |
Lambert-Lacroix S, Zwald L. 2011. Robust regression through the Huber’s criterion and adaptive lasso penalty. Electronic Journal of Statistics 5:1015−53 doi: 10.1214/11-EJS635 |
[33] |
Owen AB. 2007. A robust hybrid of lasso and ridge regression. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Machine and Statistical Learning: Prediction and Discovery, Snowbird, UT, 2006, Contemporary Mathematics 443:59−72. Providence, RI: American Mathematical Society http://www.ams.org/books/conm/443/ |
[34] |
Zwald L, Lambert-Lacroix S. 2012. The BerHu penalty and the grouped effect. arXiv preprint arXiv: 1207.6868 |
[35] |
Grant M, Boyd S, Ye Y. 2008. CVX: Matlab software for disciplined convex programming. http://cvxr.com/cvx/ |
[36] |
Sæbø S, Almøy T, Aarøe J, Aastveit AH. 2007. ST-PLS: a multi-directional nearest shrunken centroid type classifier via PLS. Chemometrics 22:54−62 doi: 10.1002/cem.1101 |
[37] |
Chun H, Keleş S. 2010. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72:3−25 doi: 10.1111/j.1467-9868.2009.00723.x |
[38] |
Lê Cao K-A, Rossouw D, Robert-Granié C, Besse P. 2008. A sparse PLS for variable selection when integrating omics data. Statistical applications in genetics and molecular biology 7:Ariticl 35 doi: 10.2202/1544-6115.1390 |
[39] |
Chaffey N, Cholewa E, Regan S, Sundberg B. 2002. Secondary xylem development in Arabidopsis: a model for wood formation. Physiologia plantarum 114:594−600 doi: 10.1034/j.1399-3054.2002.1140413.x |
[40] |
Kumari S, Deng W, Gunasekara C, Chiang V, Chen HS, et al. 2016. Bottom-up GGM algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways or processes. BMC Bioinformatics 17:132 doi: 10.1186/s12859-016-0981-1 |
[41] |
Zheng J, He C, Qin Y, Lin G, Park WD, et al. 2019. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant J. 97:530−42 doi: 10.1111/tpj.14140 |
[42] |
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511−5 doi: 10.1038/nbt.1621 |
[43] |
Huber PJ. 2011. Robust statistics. In International Encyclopedia of Statistical Science, ed. Lovric M. Berlin, Heidelberg: Springer. pp. 1248−51 https://doi.org/10.1007/978-3-642-04898-2_594 |
[44] |
Yi C, Huang J. 2017. Semismooth newton coordinate descent algorithm for elastic-net penalized huber loss regression and quantile regression. Journal of Computational and Graphical Statistics 26:547−57 doi: 10.1080/10618600.2016.1256816 |
[45] |
Parikh N, Boyd S. 2014. Proximal algorithms. Foundations and Trends® in Optimization 1:127−239 doi: 10.1561/2400000003 |
[46] |
Yu YL. 2013. On decomposing the proximal map. NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2013, vol 1:91−9. New York: Curran Associates Inc. https://proceedings.neurips.cc/paper/2013/file/98dce83da57b0395e163467c9dae521b-Paper.pdf |
[47] |
Beck, A. and M. Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences 2(1):183−202 doi: 10.1137/080716542 |
[48] |
Vinzi VE, Russolillo G. 2013. Partial least squares algorithms and methods. WIREs Computational Statistics 5:1−19 doi: 10.1002/wics.1239 |
[49] |
Shen H, Huang JZ. 2008. Sparse principal component analysis via regularized low rank matrix approximation. Journal of multivariate analysis 99:1015−34 doi: 10.1016/j.jmva.2007.06.007 |
[50] |
Tenenhaus A, Guillemot V, Gidrol X, Frouin V. 2010. Gene association networks from microarray data using a regularized estimation of partial correlation based on PLS regression. IEEE/ACM Trans Comput Biol Bioinform 7:251−62 doi: 10.1109/TCBB.2008.87 |
[51] |
Simca P. 2002. SIMCA-P+ 10 Manual. Umetrics AB |
[52] |
Deng W. 2018. Algorithms for reconstruction of gene regulatory networks from high -throughput gene expression data. PhD. Open Access Dissertation. Michigan Technological University. pp. 101 https://digitalcommons.mtu.edu/etdr/722/ |
[53] |
Zhou J, Lee C, Zhong R, Ye ZH. 2009. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248−66 doi: 10.1105/tpc.108.063321 |
[54] |
Shuai B, Reynaga-Peña CG, Springer PS. 2002. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol. 129:747−61 doi: 10.1104/pp.010926 |
[55] |
Nishitani K, Demura T. 2015. Editorial: An Emerging View of Plant Cell Walls as an Apoplastic Intelligent System. Plant and Cell Physiology 56:177−9 doi: 10.1093/pcp/pcv001 |
[56] |
Wang P, Hendron RW, Kelly S. 2017. Transcriptional control of photosynthetic capacity: conservation and divergence from Arabidopsis to rice. New Phytol. 216:32−45 doi: 10.1111/nph.14682 |
[57] |
Cluis CP, Mouchel CF, Hardtke CS. 2004. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J. 38:332−47 doi: 10.1111/j.1365-313X.2004.02052.x |
[58] |
Andronis C, Barak S, Knowles SM, Sugano S, Tobin EM. 2008. The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in Arabidopsis. Mol. Plant 1:58−67 doi: 10.1093/mp/ssm005 |
[59] |
Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. 2018. Two B-Box Proteins Regulate Photomorphogenesis by Oppositely Modulating HY5 through their Diverse C-Terminal Domains. Plant Physiol. 176:2963−76 doi: 10.1104/pp.17.00856 |
[60] |
Jiang Y, Yang C, Huang S, Xie F, Xu Y, et al. 2019. The ELF3-PIF7 Interaction Mediates the Circadian Gating of the Shade Response in Arabidopsis. iScience 22:288−98 doi: 10.1016/j.isci.2019.11.029 |
[61] |
Kim K, Jeong J, Kim J, Lee N, Kim ME, et al. 2016. PIF1 Regulates Plastid Development by Repressing Photosynthetic Genes in the Endodermis. Molecular plant 9:1415−27 doi: 10.1016/j.molp.2016.08.007 |
[62] |
Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, et al. 2009. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad. Sci. U. S. A. 106:7660−5 doi: 10.1073/pnas.0812219106 |
[63] |
Leivar P, Monte E, Al-Sady B, Carle C, Storer A, et al. 2008. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:337−52 doi: 10.1105/tpc.107.052142 |
[64] |
Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA. 2009. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. The Plant cell 21:1109−28 doi: 10.1105/tpc.108.065250 |
[65] |
Zubo YO, Blakley IC, Franco-Zorrilla JM, Yamburenko MV, Solano R, et al. 2018. Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. Plant physiology 178:130−47 doi: 10.1104/pp.18.00414 |
[66] |
Privat I, Hakimi MA, Buhot L, Favory JJ, Mache-Lerbs S. 2003. Characterization of Arabidopsisplastid sigma-like transcription factors SIG1, SIG2 and SIG3. Plant Mol. Biol. 51:385−99 doi: 10.1023/A:1022095017355 |
[67] |
Litthauer S, Battle MW, Lawson T, Jones MA. 2015. Phototropins maintain robust circadian oscillation of PSⅡ operating efficiency under blue light. Plant J. 83:1034−45 doi: 10.1111/tpj.12947 |
[68] |
Manfield IW, Devlin PF, Jen CH, Westhead DR, Gilmartin PM. 2007. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family. Plant Physiol 143:941−58 doi: 10.1104/pp.106.090761 |
[69] |
Zhang Z, Ren C, Zou L, Wang Y, Li S, et al. 2018. Characterization of the GATA gene family in Vitis vinifera: genome-wide analysis, expression profiles, and involvement in light and phytohormone response. Genome 61:713−23 doi: 10.1139/gen-2018-0042 |
[70] |
Jeong MJ, Shih MC. 2003. Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem. Biophys. Res. Commun. 300:555−62 doi: 10.1016/S0006-291X(02)02892-9 |
[71] |
Kawoosa T, Gahlan P, Devi AS, Kumar S. 2014. The GATA and SORLIP motifs in the 3-hydroxy-3-methylglutaryl-CoA reductase promoter of Picrorhiza kurrooa for the control of light-mediated expression. Funct. Integr. Genomics 14:191−203 doi: 10.1007/s10142-013-0350-3 |
[72] |
Liu Y, Patra B, Pattanaik S, Wang Y, Yuan L. 2019. GATA and Phytochrome Interacting Factor Transcription Factors Regulate Light-Induced Vindoline Biosynthesis in Catharanthus roseus. Plant Physiol. 180:1336−50 doi: 10.1104/pp.19.00489 |
[73] |
Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, et al. 2015. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. J. Exp. Bot. 66:4551−66 doi: 10.1093/jxb/erv217 |
[74] |
Waters MT, Langdale JA. 2009. The making of a chloroplast. EMBO J. 28:2861−73 doi: 10.1038/emboj.2009.264 |
[75] |
Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, et al. 2011. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genomics. 286:321−32 doi: 10.1007/s00438-011-0647-7 |
[76] |
Oh E, Zhu JY, Wang ZY. 2012. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature cell biology 14:802−9 doi: 10.1038/ncb2545 |
[77] |
Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. 2008. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763−82 doi: 10.1105/tpc.108.061325 |
[78] |
Chun H, Keleş S. 2010. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Series B Stat. Methodol 72:3−25 doi: 10.1111/j.1467-9868.2009.00723.x |
[79] |
Efron B, Hastie T, Johnstone I, Tibshirani R. 2004. Least angle regression. Annals of Statistics 32:407−99 doi: 10.1214/009053604000000067 |
[80] |
Xie Y, Liu Y, Valdar W. 2016. Joint estimation of multiple dependent Gaussian graphical models with applications to mouse genomics. Biometrika 103:493−511 doi: 10.1093/biomet/asw035 |