[1] |
Geyer R, Jambeck J, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:e1700782 doi: 10.1126/sciadv.1700782
|
[2] |
Thompson RC, Moore CJ, vom Saal FS, Swan SH. 2009. Plastics, the environment and human health: current consensus and future trends. Phil. Trans. R. Soc. Lond B Biol. Sci. 364:2153−66 doi: 10.1098/rstb.2009.0053
|
[3] |
Datta J, Włoch M. 2017. Recycling of Polyurethanes. In Polyurethane Polymers: Blends and Interpenetrating Polymer Networks, eds. Thomas S, et al. Netherlands: Elsevier. pp. 323−58 https://doi.org/10.1016/B978-0-12-804039-3.00014-2
|
[4] |
Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K. 1995. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J. Appl. Polymer Sci. 56:1789−96 doi: 10.1002/app.1995.070561309
|
[5] |
Howard GT. 2002. Biodegradation of polyurethane: a review. Int. Biodeterior. Biodegradation 49:245−52 doi: 10.1016/S0964-8305(02)00051-3
|
[6] |
Hopewell J, Dvorak R, Kosior E. 2009. Plastics recycling: Challenges and opportunities. Phil. Trans. R. Soc. Lond B Biol. Sci. 364:2115−26 doi: 10.1098/rstb.2008.0311
|
[7] |
Datta J, Kopczyńska P. 2016. From polymer waste to potential main industrial products: Actual state of recycling and recovering. Crit. Rev. Environ. Sci. Technol. 46:905−46 doi: 10.1080/10643389.2016.1180227
|
[8] |
Yang S-S, Wu W-M. 2020. Biodegradation of Plastics in Tenebrio Genus (Mealworms). In Microplastics in Terrestrial Environments Emerging Contaminants and Major Challenges, eds. He D, Luo Y. Switzerland: Springer Nature AG. pp. 385−422 https://doi.org/10.1007/978-3-030-56271-7
|
[9] |
Kesti SS, Shivasharana CT. 2018. The role of insects and microorganisms in plastic biodegradation: A comprehensive review. Int. J. Sci. Res. Biol. Sci. 5:75−9 doi: 10.26438/ijsrbs/v5i6.7579
|
[10] |
Billen P, Khalifa L, Van Gervena F, Tavernier S, Spatari S. 2020. Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Sci. Total Environ. 735:139521 doi: 10.1016/j.scitotenv.2020.139521
|
[11] |
Berasategui A, Shukla S, Salem H, Kaltenpoth M. 2016. Potential applications of insect symbionts in biotechnology. Appl. Microbiol. Biotechnol. 100:1567−77 doi: 10.1007/s00253-015-7186-9
|
[12] |
Kannan M, Mubarakali D, Thiyonila B, Krishnan M, Padmanaban B, et al. 2019. Insect gut as a bioresource for potential enzymes - an unexploited area for industrial biotechnology. Biocatal. Agric. Biotechnol. 18:101010 doi: 10.1016/j.bcab.2019.01.048
|
[13] |
Raddadi N, Fava F. 2019. Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. Sci. Total Environ. 679:148−58 doi: 10.1016/j.scitotenv.2019.04.419
|
[14] |
Xie S, Lan Y, Sun C, Shao Y. 2019. Insect microbial symbionts as a novel source for biotechnology. World J. Microbiol. Biotechnol. 35:25 doi: 10.1007/s11274-019-2599-8
|
[15] |
Jang S, Kikuchi Y. 2020. Impact of the insect gut microbiota on ecology, evolution, and industry. Curr. Opin. Insect Sci. 41:33−9 doi: 10.1016/j.cois.2020.06.004
|
[16] |
van Huis A, Oonincx DGAB, Rojo S, Tomberlin JK. 2020. Insects as feed: House fly or black soldier fly? J. Insects Food Feed 6:221−9 doi: 10.3920/JIFF2020.x003
|
[17] |
Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344:179−99 doi: 10.1016/j.jhazmat.2017.10.014
|
[18] |
Halloran A, Flore R, Vantomme P, Roos N. (Eds.) 2018. Edible Insects in Sustainable Food Systems. Amsterdam: Springer, Cham. pp. XVII, 479 https://doi.org/10.1007/978-3-319-74011-9
|
[19] |
iNaturalist. 2017. Occurrence Dataset https://doi.org/10.15468/ab3s5x accessed via GBIF.org on 2018-05-21 https://www.gbif.org/occurrence/1562899324
|
[20] |
Song Y, Qiu R, Hu J, Li X, Zhang X, et al. 2020. Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Sci. Total Environ. 746:141289 doi: 10.1016/j.scitotenv.2020.141289
|
[21] |
Aboelkheir MG, Visconte LY, Oliveira GE, Filho RDT, Souza Jr FG. 2019. The biodegradative effect of Tenebrio molitor (Linnaeus) larvae on vulcanized SBR and tire crumb. Sci. Total Environ. 649:1075−82 doi: 10.1016/j.scitotenv.2018.08.228
|
[22] |
Urbanek AK, Rybak J, Wróbel M, Leluk K, Mirończuk AM. 2020. A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environ. Pollut. 262:114281 doi: 10.1016/j.envpol.2020.114281
|
[23] |
Yang L, Gao J, Liu Y, Zhuang G, Peng X, et al. 2021. Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere 262:127818 doi: 10.1016/j.chemosphere.2020.127818
|
[24] |
Brandon AM, Gao S-H, Tian R, Ning D, Yang S, et al. 2018. Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environ. Sci. Technol. 52:6526−33 doi: 10.1021/acs.est.8b02301
|
[25] |
Koh DW-S, Ang BY-X, Yeo JY, Xing Z, Gan SK-E. 2020. Plastic agriculture using worms: Augmenting polystyrene consumption and using frass for plant growth towards a zero-waste circular economy. bioRxiv preprint doi: 10.1101/2020.05.29.123521
|
[26] |
Yang Y, Yang J, Wu W-M, Zhao J, Song Y, et al. 2015. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environ. Sci. Technol. 49:12080−6 doi: 10.1021/acs.est.5b02661
|
[27] |
Lou Y, Ekaterina P, Yang S-S, Lu B, Liu B, et al. 2020. Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ. Sci. Technol. 54:2821−31 doi: 10.1021/acs.est.9b07044
|
[28] |
Yang S-S, Brandon AM, Flanagan JCA, Yang J, Ning D, et al. 2018. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 191:979−89 doi: 10.1016/j.chemosphere.2017.10.117
|
[29] |
Yang Y, Wang J, Xia M. 2020. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci. Tot. Environ. 708:135233 doi: 10.1016/j.scitotenv.2019.135233
|
[30] |
Wu Q, Tao H, Wong MH. 2019. Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. Environ. Geochem. Health 41:17−26 doi: 10.1007/s10653-018-0161-5
|
[31] |
Bożek M, Hanus-Lorenz B, Rybak J. 2017. The studies on waste biodegradation by Tenebrio molitor. E3S Web Conf. 17:1−7 doi: 10.1051/e3sconf/20171700011
|
[32] |
Peng B-Y, Li Y, Fan R, Chen Z, Chen J, et al. 2020. Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environ. Pollut. 266:115206 doi: 10.1016/j.envpol.2020.115206
|
[33] |
Kim HR, Lee HM, Yu HC, Jeon E, Lee S, et al. 2020. Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environ. Sci. Technol. 54:6987−96 doi: 10.1021/acs.est.0c01495
|
[34] |
Peng B, Su Y, Chen Z, Chen J, Zhou X, et al. 2019. Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environ. Sci. Technol. 53:5256−65 doi: 10.1021/acs.est.8b06963
|
[35] |
Woo S, Song I, Cha HJ. 2020. Fast and facile biodegradation of polystyrene by the gut microbial flora of Plesiophthalmus davidis larvae. Appl. Environ. Microbiol. 86:e01361−20 doi: 10.1128/AEM.01361-20
|
[36] |
Kundungal H, Gangarapu M, Sarangapani S, Patchaiyappan A, Devipriya SP. 2019. Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ. Sci. Pollut. Res. 26:18509−19 doi: 10.1007/s11356-019-05038-9
|
[37] |
Kesti SS, Thimmappa SC. 2019. First report on biodegradation of low density polyethylene by rice moth larvae, Corcyra cephalonica (Stainton). Holistic Approach Environ. 9:79−83 doi: 10.33765/thate.9.4.2
|
[38] |
Bombelli P, Howe CJ, Bertocchini F. 2017. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr. Biol. 27:R283−R293 doi: 10.1016/j.cub.2017.02.060
|
[39] |
Kundungal H, Gangarapu M, Sarangapani S, Patchaiyappan A, Devipriya SP. 2021. Role of pretreatment and evidence for the enhanced biodegradation and mineralization of low density polyethylene films by greater waxworm. Environ. Technol. 42:717−30 doi: 10.1080/09593330.2019.1643925
|
[40] |
Zhang J, Gao D, Li Q, Zhao Y, Li L, et al. 2020. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci. Total Environ. 704:135931 doi: 10.1016/j.scitotenv.2019.135931
|
[41] |
Kaplan DL, Hartenstein R, Sutter J. 1979. Biodegradation of polystyrene, poly(methyl methacrylate), and phenol formaldehyde. Appl. Environ. Microbiol. 38:551−3 doi: 10.1128/AEM.38.3.551-553.1979
|
[42] |
Yang J, Yang Y, Wu W, Zhao J, Jiang L. 2014. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 48:13776−84 doi: 10.1021/es504038a
|
[43] |
Carlton C, Bayless V. 2011. A case of Cnestus mutilatus (Blandford) (Curculionidae: Scolytinae: Xyleborini) females damaging plastic fuel storage containers in Louisiana, U.S.A. Coleopt. Bull. 65:290−1 doi: 10.1649/072.065.0308
|
[44] |
Kong HG, Kim HH, Chung JH, Jun J, Lee S, et al. 2019. The Galleria mellonella hologenome supports microbiota-independent metabolism of long-chain hydrocarbon beeswax. Cell Rep. 26:2451−64 doi: 10.1016/j.celrep.2019.02.018
|
[45] |
Nukmal N, Umar S, Amanda SP, Kanedi M. 2018. Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). Online J. Biol. Sci. 18:24−8 doi: 10.3844/ojbsci.2018.24.28
|
[46] |
Ojha S, Bußler S, Schlüter OK. 2020. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manage. 118:600−9 doi: 10.1016/j.wasman.2020.09.010
|
[47] |
Douglas AE. 2009. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23:38−47 doi: 10.1111/j.1365-2435.2008.01442.x
|
[48] |
Klepzig KD, Adams AS, Handelsman J, Raffa KF. 2009. Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ. Entomol. 38:67−77 doi: 10.1603/022.038.0109
|
[49] |
Misof B, Liu S, Meusemann K, Peters RS, Donath A, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763−7 doi: 10.1126/science.1257570
|
[50] |
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196−9 doi: 10.1126/science.aad6359
|
[51] |
Kandasamy D, Gershenzon J, Hammerbacher A. 2016. Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. J. Chem. Ecol. 42:952−69 doi: 10.1007/s10886-016-0768-x
|