[1] |
Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis. 3rd Edition. New York: Academic Press. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6 |
[2] |
Johnson NC, Angelard C, Sanders IR, Kiers ET. 2013. Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol. Lett. 16:140−53 doi: 10.1111/ele.12085 |
[3] |
Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA. 2015. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 20:283−90 doi: 10.1016/j.tplants.2015.03.004 |
[4] |
Zhu X, Song F, Liu S, Liu F. 2016. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 26:133−40 doi: 10.1007/s00572-015-0654-3 |
[5] |
Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. 2018. Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front. Plant Sci. 9:1270 doi: 10.3389/fpls.2018.01270 |
[6] |
Bowles TM, Jackson LE, Loeher M, Cavagnaro TR. 2016. Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 54:1785−93 doi: 10.1111/1365-2664.12815 |
[7] |
Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, et al. 2017. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:639−57 doi: 10.1007/s00572-017-0784-x |
[8] |
Pirzad A, Mohammadzadeh S. 2018. Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agric. Water Manage. 204:1−10 doi: 10.1016/j.agwat.2018.03.020 |
[9] |
Seguel A, Cumming JR, Klugh-Stewart K, Cornejo P, Borie F. 2013. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167−83 doi: 10.1007/s00572-013-0479-x |
[10] |
Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 123:4−15 doi: 10.1016/j.phytochem.2016.01.002 |
[11] |
Singh SP, Singh MK. 2019. Mycorrhiza in Sustainable Crop Production. In Agronomic Crops, ed. Hasanuzzaman M. Singapore: Springer Nature Singapore Pte Ltd. pp. 461−83 https://doi.org/10.1007/978-981-32-9783-8_22 |
[12] |
Rinaudo V, Bàrberi P, Giovannetti M, van der Heijden MGA. 2010. Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:7−20 doi: 10.1007/s11104-009-0202-z |
[13] |
Veiga RSL, Jansa J, Frossard E, van der Heijden MGA. 2011. Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 6(12):e27825 doi: 10.1371/journal.pone.0027825 |
[14] |
Daisog H, Sbrana C, Cristani C, Moonen AC, Giovannetti M, et al. 2012. Arbuscular mycorrhizal fungi shift competitive relationships among crop and weed species. Plant Soil 353:395−408 doi: 10.1007/s11104-011-1040-3 |
[15] |
Qiao X, Bei S, Li H, Christie P, Zhang F, et al. 2016. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant Soil 406:173−85 doi: 10.1007/s11104-016-2863-8 |
[16] |
Johnson N, Gehring C, Jansa J. 2017. Mycorrhizal mediation of soil. Amsterdam: Elsevier. https://doi.org/10.1016/C2015-0-01928-1 |
[17] |
Verbruggen E, Jansa J, Hammer EC, Rillig MC. 2016. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J. Ecol. 104:261−69 doi: 10.1111/1365-2745.12496 |
[18] |
Rillig MC, Mummey DL. 2006. Mycorrhizas and soil structure. New Phytol. 171:41−53 doi: 10.1111/j.1469-8137.2006.01750.x |
[19] |
Zhang S, Yu J, Wang S, Singh RP, Fu D. 2019. Nitrogen fertilization altered arbuscular mycorrhizal fungi abundance and soil erosion of paddy fields in the Taihu Lake region of China. Environ. Sci. Pollut. Res. 26:27987−98 doi: 10.1007/s11356-019-06005-0 |
[20] |
Köhl L, van der Heijden MGA. 2016. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol. Biochem. 94:191−9 doi: 10.1016/j.soilbio.2015.11.019 |
[21] |
Machado AAS, Valyi K, Rillig MC. 2017. Potential environmental impacts of an “Underground Revolution”: A response to Bender et al. Trends Ecol. Evol. 32:8−10 doi: 10.1016/j.tree.2016.10.009 |
[22] |
Storer K, Coggan A, Ineson P, Hodge A. 2018. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol. 220:1285−95 doi: 10.1111/nph.14931 |
[23] |
Maffei G, Miozzi L, Fiorilli V, Novero M, Lanfranco L, et al. 2014. The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24:179−86 doi: 10.1007/s00572-013-0527-6 |
[24] |
Mora-Romero GA, Cervantes-Gámez RG, Galindo-Flores H, González-Ortíz MA, Félix-Gastélum R, et al. 2015. Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 66:55−64 doi: 10.1007/s13199-015-0334-2 |
[25] |
Nair A, Kolet SP, Thulasiram HV, Bhargava S. 2015. Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biol. 17:625−31 doi: 10.1111/plb.12277 |
[26] |
Ren L, Zhang N, Wu P, Huo H, Xu G, et al. 2015. Arbuscular mycorrhizal colonization alleviates Fusarium wilt in watermelon and modulates the composition of root exudates. Plant Growth Regul. 77:77−85 doi: 10.1007/s10725-015-0038-x |
[27] |
Song Y, Chen D, Lu K, Sun Z, Zeng R. 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6:786 doi: 10.3389/fpls.2015.00786 |
[28] |
Saia S, Tamayo E, Schillaci C, De Vita P. 2020. Arbuscular mycorrhizal fungi and nutrient cycling in cropping systems. In Carbon and Nitrogen Cycling in Soil, eds. Datta R, Meena RS, Pathan SI, Ceccherini MT, Singapore: Springer Nature Singapore Pte Ltd. pp. 87−115 https://doi.org/10.1007/978-981-13-7264-3 |
[29] |
Sikes BA, Cottenie K, Klironomos JN. 2009. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol. 97:1274−80 doi: 10.1111/j.1365-2745.2009.01557.x |
[30] |
Shrivastava G, Ownley BH, Auge RM, Toler H, Dee M, et al. 2015. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65−74 doi: 10.1007/s13199-015-0319-1 |
[31] |
Selvaraj A, Thangavel K. 2021. Arbuscular Mycorrhizal Fungi: Potential Plant Protective Agent Against Herbivorous Insect and Its Importance in Sustainable Agriculture. In Symbiotic Soil Microorganisms, eds. Shrivastava N, Mahajan S, Varma A. Soil Biology, 60:vii, 489. Switzerland: Springer, Cham. pp. 319−37 https://doi.org/10.1007/978-3-030-51916-2_19 |
[32] |
McGonigle TP. 1988. A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Funct. Ecol. 2:473−8 doi: 10.2307/2389390 |
[33] |
Lekberg Y, Koide RT. 2005. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol. 168:189−204 doi: 10.1111/j.1469-8137.2005.01490.x |
[34] |
Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, et al. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13:394−407 doi: 10.1111/j.1461-0248.2009.01430.x |
[35] |
Larimer AL, Bever JD, Clay K. 2020. The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51:139−48 doi: 10.1007/s13199-010-0083-1 |
[36] |
Lehmann A, Barto K, Powell JR, Rillig MC. 2012. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives − a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231−50 doi: 10.1007/s11104-011-1095-1 |
[37] |
Pellegrino E, Öpik M, Bonari E, Ercoli L. 2015. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biol. Biochem. 84:210−7 doi: 10.1016/j.soilbio.2015.02.020 |
[38] |
Alvarez R, Steinbach HS, De Paepe JL. 2017. Cover crop effects on soils and subsequent crops in the pampas: A meta-analysis. Soil Tillage Res. 170:53−65 doi: 10.1016/j.still.2017.03.005 |
[39] |
Martín-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, et al. 2018. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 322−34 doi: 10.1111/nph.14962 |
[40] |
Hallama M, Pekrun C, Lambers H, Kandeler E. 2019. Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant Soil 434:7−45 doi: 10.1007/s11104-018-3810-7 |
[41] |
Zhang S, Lehmann A, Zheng W, You Z, Rillig MC. 2019. Arbuscular mycorrhizal fungi increase grain yields: A meta-analysis. New Phytol. 222:543−55 doi: 10.1111/nph.15570 |
[42] |
Ryan MH, Graham JH. 2018. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220:1092−107 doi: 10.1111/nph.15308 |
[43] |
Rillig MC, Aguilar-Trigueros CA, Camenzind T, Cavagnaro TR, Degrune F, et al. 2019. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222:1171−5 doi: 10.1111/nph.15602 |
[44] |
Frew A. 2019. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C3 and C4 crop plants. Soil Biol. Biochem. 135:248−50 doi: 10.1016/j.soilbio.2019.05.015 |
[45] |
Chandrasekara A, Kumar TJ. 2016. Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. Int. J. Food Sci. 2016:3631647 doi: 10.1155/2016/3631647 |
[46] |
Chaudhary VB, Rúa MA, Antoninka A, Bever JD, Cannon J, et al. 2016. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3:160028 doi: 10.1038/sdata.2016.28 |
[47] |
Van Geel M, De Beenhouwer M, Lievens B, Honnay O. 2016. Crop-specific and single-species mycorrhizal inoculation is the best approach to improve crop growth in controlled environments. Agron. Sustain. Dev. 36:37 doi: 10.1007/s13593-016-0373-y |
[48] |
Benami M, Isack Y, Grotsky D, Levy D, Kofman Y. 2020. The economic potential of arbuscular mycorrhizal fungi in agriculture. In Grand Challenges in Fungal Biotechnology, eds. Nevalainen H. Switzerland: Springer, Cham. pp. 239−79 https://doi.org/10.1007/978-3-030-29541-7_9 |
[49] |
Njeru EM, Avio L, Sbrana C, Turrini A, Bocci G, et al. 2014. First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron. Sustain. Dev. 34:841−8 doi: 10.1007/s13593-013-0197-y |
[50] |
Bender SF, Wagg C, van der Heijden MGA. 2016. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31:440−52 doi: 10.1016/j.tree.2016.02.016 |
[51] |
Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T. 2017. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Sci. 264:48−56 doi: 10.1016/j.plantsci.2017.08.004 |
[52] |
de León DG, Cantero JJ, Moora M, Öpik M, Davison J, et al. 2018. Soybean cultivation supports a diverse arbuscular mycorrhizal fungal community in central Argentina. Appl. Soil Ecol. 124:289−97 doi: 10.1016/j.apsoil.2017.11.020 |
[53] |
Porter SS, Sachs JL. 2020. Agriculture and the disruption of plant–microbial symbiosis. Trends Ecol. Evol. 35:426−39 doi: 10.1016/j.tree.2020.01.006 |
[54] |
Mortimer PE, Pérez-Fernández MA, Valentine AJ. 2008. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol. Biochem. 40:1019−27 doi: 10.1016/j.soilbio.2007.11.014 |
[55] |
Mortimer PE, Pérez-Fernández MA, Valentine AJ. 2009. Arbuscular mycorrhizae affect the N and C economy of nodulated Phaseolus vulgaris (L.) during NH4+ nutrition. Soil Biol. Biochem. 41:2115−21 doi: 10.1016/j.soilbio.2009.07.021 |
[56] |
Rosner K, Bodner G, Hage-Ahmed K, Steinkellner S. 2018. Long-term soil tillage and cover cropping affected arbuscular mycorrhizal fungi, nutrient concentrations, and yield in sunflower. Agron. J. 110:2664−72 doi: 10.2134/agronj2018.03.0177 |
[57] |
García-González I, Quemada M, Gabriel JL, Alonso-Ayuso M, Hontoria C. 2018. Legacy of eight-year cover cropping on mycorrhizae, soil, and plants. J. Plant Nutr. Soil Sci. 181:818−26 doi: 10.1002/jpln.201700591 |
[58] |
Elliott AJ, Daniell TJ, Cameron DD, Field KJ. 2020. A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients. Plants, People, Planet 00:1−12 doi: 10.1002/ppp3.10094 |
[59] |
Higo M, Tatewaki Y, Iida K, Yokota K, Isobe K. 2020. Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci. Rep. 10:6039 doi: 10.1038/s41598-020-58942-3 |
[60] |
Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. 1998. Ploughing up the wood-wide web? Nature 394:431 doi: 10.1038/28764 |
[61] |
Kabir Z. 2005. Tillage or no-tillage: Impact on mycorrhizae. Can. J. Plant Sci. 85:23−9 doi: 10.4141/P03-160 |
[62] |
Sosa-Hernández MA, Leifheit EF, Ingraffia R, Rillig MC. 2019. Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: A solution right under our feet? Front. Microbiol. 10:744 doi: 10.3389/fmicb.2019.00744 |
[63] |
de la Cruz-Ortiz ÁV, Álvarez-Lopeztello J, Robles C, Hernández-Cuevas LV. 2020. Tillage intensity reduces the arbuscular mycorrhizal fungi attributes associated with Solanum lycopersicum, in the Tehuantepec Isthmus (Oaxaca) Mexico. Appl. Soil Ecol. 149:103519 doi: 10.1016/j.apsoil.2020.103519 |
[64] |
Gu S, Wu S, Guan Y, Zhai C, Zhang Z, et al. 2020. Arbuscular mycorrhizal fungal community was affected by tillage practices rather than residue management in black soil of northeast China. Soil Tillage Res. 198:104552 doi: 10.1016/j.still.2019.104552 |
[65] |
Säle V, Aguilera P, Laczko E, Mäder P, Berner A, et al. 2015. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 84:38−52 doi: 10.1016/j.soilbio.2015.02.005 |
[66] |
Wilkes TI, Warner DJ, Davies KG, Edmonds-Brown V. 2020. Tillage, glyphosate and beneficial arbuscular mycorrhizal fungi: Optimising crop management for plant–fungal symbiosis. Agriculture 10:520 doi: 10.3390/agriculture10110520 |
[67] |
Pingali P. 2012. Green revolution: impacts, limits, and the path ahead. PNAS 109:12302−8 doi: 10.1073/pnas.0912953109 |
[68] |
Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164:347−55 doi: 10.1111/j.1469-8137.2004.01159.x |
[69] |
Gosling P, Hodge A, Goodlass G, Bending GD. 2006. Arbuscular mycorrhizal fungi and organic farming. Agric. Ecosys. Environ. 113:17−35 doi: 10.1016/j.agee.2005.09.009 |
[70] |
Robertson GP, Vitousek PM. 2009. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34:97−125 doi: 10.1146/annurev.environ.032108.105046 |
[71] |
Crossay T, Majorel C, Redecker D, Gensous S, Medevielle V, et al. 2019. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza 29:325−39 doi: 10.1007/s00572-019-00898-y |
[72] |
Hart MM, Antunes PM, Chaudhary VB, Abbott LK. 2018. Fungal inoculants in the field: Is the reward greater than the risk? Funct. Ecol. 32:126−35 doi: 10.1111/1365-2435.12976 |
[73] |
Vestberg M, Kahiluoto H, Wallius E. 2011. Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351−61 doi: 10.1007/s00572-010-0346-y |
[74] |
Oruru MB, Njeru EM. 2016. Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. BioMed Res. Int. 2016:4376240 doi: 10.1155/2016/4376240 |
[75] |
Rocha I, Duarte I, Ma Y, Souza-Alonso P, Látr A, et al. 2019. Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea. Agronomy 9:471 doi: 10.3390/agronomy9080471 |
[76] |
Verbruggen E, Kiers ET. 2010. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol. Applic. 3:547−60 doi: 10.1111/j.1752-4571.2010.00145.x |
[77] |
Rodriguez A, Sanders IR. 2015. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 9:1053−61 doi: 10.1038/ismej.2014.207 |
[78] |
Rothman DH. 2002. Atmospheric carbon dioxide levels for the last 500 million years. PNAS 99:4167−71 doi: 10.1073/pnas.022055499 |
[79] |
Werner GDA, Zhou Y, Pieterse CMJ, Kiers ET. 2018. Tracking plant preference for higher-quality mycorrhizal symbionts under varying CO2 conditions over multiple generations. Ecol. Evol. 8:78−87 doi: 10.1002/ece3.3635 |
[80] |
Thirkell TJ, Campbell M, Driver J, Pastok D, Merry B, et al. 2020a. Cultivar-dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2. Plants, People, Planet 00:1−14 doi: 10.1002/ppp3.10174 |
[81] |
Thirkell TJ, Pastok D, Field KJ. 2020. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Chang. Biol. 26:1725−38 doi: 10.1111/gcb.14851 |
[82] |
Alberton O, Kuyper TW, Gorissen A. 2005. Taking mycocentrism seriously: Mycorrhizal fungal and plant responses to elevated CO2. New Phytol. 167:859−68 doi: 10.1111/j.1469-8137.2005.01458.x |
[83] |
Houlton BZ, Almaraz M, Aneja V, Austin AT, Bai E, et al. 2019. A world of cobenefits: Solving the global nitrogen challenge. Earth's Future 7:865−72 doi: 10.1029/2019EF001222 |