[1] |
Taiz L, Zeiger E. 2002. Plant Physiology. USA: Sinaur Associates, Inc. pp.690
|
[2] |
Todorov DT, Karanov EN, Smith AR, Hall MA. 2003. Chlorophyllase activity and chlorophyll content in wild type and eti 5 mutant of Arabidopsis thaliana subjected to low and high temperatures. Biologia plantarum 46:633−6 doi: 10.1023/A:1024896418839
|
[3] |
Jespersen D, Zhang J, Huang B. 2016. Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Science 249:1−12 doi: 10.1016/j.plantsci.2016.04.016
|
[4] |
Rossi S, Burgess P, Jespersen D, Huang B. 2017. Heat-induced leaf senescence associated with Chlorophyll metabolism in Bentgrass lines differing in heat tolerance. Crop Science 57:S169−S178 doi: 10.2135/cropsci2016.06.0542
|
[5] |
Rossi S, Chapman C, Huang B. 2020. Suppression of Heat-induced Leaf Senescence by $ \gamma $-Aminobutyric Acid, Proline, and Ammonium Nitrate through Regulation of Chlorophyll Degradation in Creeping Bentgrass. Environmental and Experimental Botany 177:104116 doi: 10.1016/j.envexpbot.2020.104116
|
[6] |
Miflin BJ, Lea PJ. 1980. Ammonia assimilation. In Amino Acids and Derivatives, ed. Miflin BJ. USA: Academic Press. pp.169−202 https://doi.org/10.1016/B978-0-12-675405-6.50010-3
|
[7] |
Liu J, Wu YH, Yang JJ, Liu YD, Shen FF. 2008. Protein degradation and nitrogen remobilization during leaf senescence. Journal of Plant Biology 51:11−19 doi: 10.1007/BF03030735
|
[8] |
Hirel B, Lea PJ. 2001. Ammonia assimilation. In Plant Nitrogen, eds. Lea PJ, Morot-Gaudry JF. Berlin, Heidelberg: Springer. pp.79−99 https://doi.org/10.1007/978-3-662-04064-5_4
|
[9] |
Potel F, Valadier M-H, Ferrario-Méry S, Grandjean O, Morin H, et al. 2009. Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana – roles of glutamate synthases and carbamoylphosphate synthetase in leaves. The FEBS Journal 276:4061−76 doi: 10.1111/j.1742-4658.2009.07114.x
|
[10] |
Ishizaki T, Ohsumi C, Totsuka K, Igarashi D. 2010. Analysis of glutamate homeostasis by overexpression of Fd-GOGAT gene in Arabidopsis thaliana. Amino Acids 38:943−50 doi: 10.1007/s00726-009-0303-2
|
[11] |
Bouché N, Fait A, Zik M, Fromm H. 2004. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Molecular Biology 55:315−25 doi: 10.1007/s11103-004-0650-z
|
[12] |
Nayyar H, Kaur R, Kaur S, Singh R. 2014. $ \gamma $-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. Journal of plant growth regulation 33:408−19 doi: 10.1007/s00344-013-9389-6
|
[13] |
Lea PJ, Sodek L, Parry MA, Shewry PR, Halford NG. 2007. Asparagine in plants. Annals of Applied Biology 150:1−26 doi: 10.1111/j.1744-7348.2006.00104.x
|
[14] |
Azevedo RA, Lancien M, Lea PJ. 2006. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino acids 30:143−62 doi: 10.1007/s00726-005-0245-2
|
[15] |
Kannangara CG, Andersen RV, Pontoppidan B, Willows R, von Wettstein D. 2007. Enzymic and Mechanistic Studies on the Conversion of Glutamate to 5-Aminolaevulinate. In The Biosynthesis of the Tetrapyrrole Pigments, eds. Chadwick DJ, Ackrill K. Ciba Foundation. pp.3−25
|
[16] |
Kang J, Turano FJ. 2003. The putative glutamate receptor 1.1 (AtGLR1. 1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of The United States of America 100:6872−7 doi: 10.1073/pnas.1030961100
|
[17] |
Teixeira WF, Fagan EB, Soares LH, Umburanas RC, Reichardt K, et al. 2017. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Frontiers in Plant Science 8:327 doi: 10.3389/fpls.2017.00327
|
[18] |
Teixeira WF, Soares LH, Fagan EB, da Costa Mello S, Reichardt K, et al. 2020. Amino acids as stress reducers in soybean plant growth under different water-deficit conditions. Journal of Plant Growth Regulation 39:905−19 doi: 10.1007/s00344-019-10032-z
|
[19] |
Lee HJ, Lee JH, Wi S, Jang Y, An S, et al. 2021. Exogenously applied glutamic acid confers improved yield through increased photosynthesis efficiency and antioxidant defense system under chilling stress condition in Solanum lycopersicum L. cv. Dotaerang Dia. Scientia Horticulturae 277:109817 doi: 10.1016/j.scienta.2020.109817
|
[20] |
Li ZG, Ye XY, Qiu XM. 2019. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling. Protoplasma 256:1165−9 doi: 10.1007/s00709-019-01351-9
|
[21] |
Shelp BJ, Bown AW, McLean MD. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science 4:446−52 doi: 10.1016/S1360-1385(99)01486-7
|
[22] |
Li Z, Yu J, Peng Y, Huang B. 2016. Metabolic pathways regulated by $ \gamma $-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports 6:30338 doi: 10.1038/srep30338
|
[23] |
Li Z, Yu J, Peng Y, Huang B. 2017. Metabolic pathways regulated by abscisic acid, salicylic acid and $ \gamma $-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiologia Plantarum 159:42−58 doi: 10.1111/ppl.12483
|
[24] |
Li Z, Peng Y, Huang B. 2018. Alteration of transcripts of stress-protective genes and transcriptional factors by $ \gamma $-aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). International journal of molecular sciences 19:1623 doi: 10.3390/ijms19061623
|
[25] |
Locy RD, Wu SJ, Bisnette J, Barger TW, McNabb D, et al. 2000. The regulation of GABA accumulation by heat stress in Arabidopsis. In Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering, eds. Cherry JH, Locy RD, Rychter A. NATO Science Series (Series 3: High Technology), vol 83. Dordrecht: Springer. pp.39−52 https://doi.org/10.1007/978-94-011-4323-3_3
|
[26] |
Stepansky A, Leustek T. 2006. Histidine biosynthesis in plants. Amino acids 30:127−42 doi: 10.1007/s00726-005-0247-0
|
[27] |
Kohen R, Yamamoto Y, Cundy KC, Ames BN. 1988. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proceedings of the National Academy of Sciences of The United States of America 85:3175−9 doi: 10.1073/pnas.85.9.3175
|
[28] |
Raven PH, Evert RF, Eichhorn SE. 2005. Biology of Plants. USA: Macmillan
|
[29] |
Wang J, Yuan B, Xu Y, Huang B. 2018. Differential responses of amino acids and soluble proteins to heat stress associated with genetic variations in heat tolerance for hard fescue. Journal of the American Society for Horticultural Science 143:45−55 doi: 10.21273/JASHS04246-17
|
[30] |
Moreno JI, Martin R, Castresana C. 2005. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. The Plant Journal 41:451−63 doi: j.1365-313X.2004.02311.x
|
[31] |
Ho CL, Noji M, Saito M, Yamazaki M, Saito K. 1998. Molecular characterization of plastidic phosphoserine aminotransferase in serine biosynthesis from Arabidopsis. The Plant Journal 16:443−52 doi: 10.1046/j.1365-313x.1998.00313.x
|
[32] |
Sekula B, Ruszkowski M, Dauter z. 2018. Structural analysis of phosphoserine aminotransferase (Isoform 1) from Arabidopsis thaliana – the enzyme involved in the phosphorylated pathway of serine biosynthesis. Frontiers in plant science 9:876 doi: 10.3389/fpls.2018.00876
|
[33] |
Igamberdiev AU, Kleczkowski LA. 2018. The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. Frontiers in Plant Science 9:318 doi: 10.3389/fpls.2018.00318
|
[34] |
Fait A, Fromm H, Walter D, Galili G, Fernie AR. 2008. Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science 13:14−9 doi: 10.1016/j.tplants.2007.10.005
|
[35] |
Graham IA, Eastmond PJ. 2002. Pathways of straight and branched chain fatty acid catabolism in higher plants. Progress in Lipid Research 41:156−81 doi: 10.1016/S0163-7827(01)00022-4
|
[36] |
Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, et al. 2010. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. The Plant Cell 5:1549−63 doi: 10.1105/tpc.110.075630
|
[37] |
Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. 2011. Protein degradation – an alternative respiratory substrate for stressed plants. Trends in Plant Science 16:489−98 doi: 10.1016/j.tplants.2011.05.008
|
[38] |
Du H, Wang Z, Yu W, Liu Y, Huang B. 2011. Differential metabolic responses of perennial grass Cynodon transvaalensis × Cynodon dactylon (C4) and Poa Pratensis (C3) to heat stress. Physiologia Plantarum 141:251−64 doi: 10.1111/j.1399-3054.2010.01432.x
|
[39] |
Shambaugh GE, III. 1977. Urea biosynthesis I. The urea cycle and relationships to the citric acid cycle. The American Journal of Clinical Nutrition 30:2083−7 doi: 10.1093/ajcn/30.12.2083
|
[40] |
Ahern K, Rajagopal I, Tan T. 2021. Amino Acids and the Urea Cycle. In Biochemistry Free For All, eds. Ahern K, Rajagopal I, Tan T. LibreTexts. pp.617−60 https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Biochemistry_Free_For_All_(Ahern_Rajagopal_and_Tan)/06%3A_Metabolism/6.05%3A_Amino_Acids_and_the_Urea_Cycle (Accessed March 6, 2021)
|
[41] |
Hildebrandt TM, Nesi AN, Araújo WL, Braun HP. 2015. Amino acid catabolism in plants. Molecular Plant 8:1563−79 doi: 10.1016/j.molp.2015.09.005
|
[42] |
Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347:32
|
[43] |
Beard JB. 1973. Turfgrass: Science and culture. NJ: Prentice Hall
|
[44] |
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology 24:1 doi: 10.1104/pp.24.1.1
|
[45] |
Iriyama K, Ogura N, Takamiya A. 1974. A simple method for extraction and partial purification of chlorophyll from plant material, using dioxane. The Journal of Biochemistry 76:901−4 doi: 10.1093/oxfordjournals.jbchem.a130638
|
[46] |
Jones RM, Jordan PM. 1994. Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana. Biochemical Journal 299:895−902 doi: 10.1042/bj2990895
|
[47] |
Fang Z, Bouwkamp JC, Solomos T. 1998. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. Journal of Experimental Botany 49:503−10 doi: 10.1093/jxb/49.320.503
|
[48] |
Kaewsuksaeng S, Urano Y, Aiamla-or S, Shigyo M, Yamauchi N. 2011. Effect of UV-B irradiation on chlorophyll-degrading enzyme activities and postharvest quality in stored lime (Citrus latifolia Tan.) fruit. Postharvest Biology and Technology 61:124−30 doi: 10.1016/j.postharvbio.2011.02.014
|
[49] |
Aiamla-or S, Kaewsuksaeng S, Shigyo M, Yamauchi N. 2010. Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica Group) florets. Food Chemistry 120:645−651 doi: 10.1016/j.foodchem.2009.10.056
|
[50] |
Yuan B, Lyu W, Dinssa FF, Simon JE, Wu Q. 2020. Free amino acids in African indigenous vegetables: Analysis with improved hydrophilic interaction ultra-high performance liquid chromatography tandem mass spectrometry and interactive machine learning. Journal of Chromatography A 1637:461733 doi: 10.1016/j.chroma.2020.461733
|
[51] |
SAS Institute. 2008. The SAS system for Windows. Release 9.2. Cary, NC: SAS Institute
|