[1] |
Luan Y, Fu X, Lu P, Grierson D, Xu C. 2020. Molecular Mechanisms Determining the Differential Accumulation of Carotenoids in Plant Species and Varieties. Critical Reviews in Plant Sciences 39:125−39 doi: 10.1080/07352689.2020.1768350
|
[2] |
Timoneda A, et al. 2019. The evolution of betalain biosynthesis in Caryophyllales. New Phytologist 224:71−85 doi: 10.1111/nph.15980
|
[3] |
Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49 doi: 10.1111/j.1365-313X.2008.03447.x
|
[4] |
Williams CA, Grayer RJ. 2004. Anthocyanins and Other Flavonoids. ChemInform 35 doi: 10.1002/chin.200447250
|
[5] |
Quideau S. 2006. Flavonoids. Chemistry, Biochemistry and Applications. Edited by Øyvind M. Andersen and Kenneth R. Markham. Angewandte Chemie International Edition 45:6786−7 doi: 10.1002/anie.200685399
|
[6] |
Hichri I, et al. 2011. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany 62:2465−83 doi: 10.1093/jxb/erq442
|
[7] |
Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. 2019. The Origin and Evolution of Plant Flavonoid Metabolism. Frontiers in Plant Science 10:943 doi: 10.3389/fpls.2019.00943
|
[8] |
Zhao D, Tao J. 2015. Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science 6:261 doi: 10.3389/fpls.2015.00261
|
[9] |
Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181:219−29 doi: 10.1016/j.plantsci.2011.05.009
|
[10] |
Hughes NM, Neufeld HS, Burkey KO. 2005. Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytologist 168:575−87 doi: 10.1111/j.1469-8137.2005.01546.x
|
[11] |
Karageorgou P, Manetas Y. 2006. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiology 26:613−21 doi: 10.1093/treephys/26.5.613
|
[12] |
Landi M, Tattini M, Gould KS. 2015. Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany 119:4−17 doi: 10.1016/j.envexpbot.2015.05.012
|
[13] |
Saigo T, Wang T, Watanabe M, Tohge T. 2020. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology 55:93−9 doi: 10.1016/j.pbi.2020.04.001
|
[14] |
Cain CC, Saslowsky DE, Walker RA, Shirley BW. 1997. Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings. Plant Molecular Biology 35:377−81 doi: 10.1023/A:1005846620791
|
[15] |
Zhao C, et al. 2020. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnology Journal doi: 10.1111/pbi.13494
|
[16] |
Irmisch S, et al. 2019. Flavonol Biosynthesis Genes and Their Use in Engineering the Plant Antidiabetic Metabolite Montbretin A. Plant Physiology 180:1277−90 doi: 10.1104/pp.19.00254
|
[17] |
Britsch L, Grisebach H. 1986. Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. European Journal of Biochemistry 156:569−77 doi: 10.1111/j.1432-1033.1986.tb09616.x
|
[18] |
Lui ACW, et al. 2020. Convergent recruitment of 5′-hydroxylase activities by CYP75B flavonoid B-ring hydroxylases for tricin biosynthesis in Medicago legumes. New Phytologist 228:269−84 doi: 10.1111/nph.16498
|
[19] |
Li Y, et al. 2017. Dihydroflavonol 4-Reductase Genes from Freesia hybrida Play Important and Partially Overlapping Roles in the Biosynthesis of Flavonoids. Frontiers in Plant Science 8:428 doi: 10.3389/fpls.2017.00428
|
[20] |
Wu X, et al. 2020. DNA methylation of LDOX gene contributes to the floral colour variegation in peach. Journal of Plant Physiology 246-47:153116 doi: 10.1016/j.jplph.2020.153116
|
[21] |
Jung W, et al. 2000. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnology 18:208−12 doi: 10.1038/72671
|
[22] |
Martens S, Mithöfer A. 2005. Flavones and flavone synthases. Phytochemistry 66:2399−407 doi: 10.1016/j.phytochem.2005.07.013
|
[23] |
Du Y, Chu H, Chu IK, Lo C. 2010. CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice. Plant Physiology 154:324−33 doi: 10.1104/pp.110.161042
|
[24] |
Shan X, et al. 2020. The spatio-temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida. New Phytologist 228:1864−79 doi: 10.1111/nph.16818
|
[25] |
Li H, et al. 2019. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry 139:141−51 doi: 10.1016/j.plaphy.2019.03.003
|
[26] |
Morita Y, Ishiguro K, Tanaka Y, Iida S, Hoshino A. 2015. Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories. Planta 242:575−87 doi: 10.1007/s00425-015-2321-5
|
[27] |
Sun W, et al. 2015. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway. PLoS One 10:e0119054 doi: 10.1371/journal.pone.0119054
|
[28] |
Ralston L, Subramanian S, Matsuno M, Yu O. 2005. Partial Reconstruction of Flavonoid and Isoflavonoid Biosynthesis in Yeast Using Soybean Type I and Type II Chalcone Isomerases. Plant Physiology 137:1375−88 doi: 10.1104/pp.104.054502
|
[29] |
Ngaki MN, et al. 2012. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485:530−33 doi: 10.1038/nature11009
|
[30] |
Kaltenbach M, et al. 2018. Evolution of chalcone isomerase from a noncatalytic ancestor. Nature Chemical Biology 14:548−55 doi: 10.1038/s41589-018-0042-3
|
[31] |
Ban Z, et al. 2018. Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proceedings of the National Academy of Sciences 115:E5223−E5232 doi: 10.1073/pnas.1802223115
|
[32] |
Cheng A-X, et al. 2018. Identification of chalcone isomerase in the basal land plants reveals an ancient evolution of enzymatic cyclization activity for synthesis of flavonoids. New Phytologist 217:909−24 doi: 10.1111/nph.14852
|
[33] |
Herden T, Hanelt P, Friesen N. 2016. Phylogeny of Allium L. subgenus Anguinum (G. Don. ex W.D.J. Koch) N. Friesen (Amaryllidaceae). Molecular Phylogenetics and Evolution 95:79−93 doi: 10.1016/j.ympev.2015.11.004
|
[34] |
Gao W, et al. 2012. Isolation and identification of fourteen microsatellite markers in Clivia miniata and Clivia nobilis (Amaryllidaceae). International Journal of Molecular Sciences 13:9609−14 doi: 10.3390/ijms13089609
|
[35] |
Conrad AC, Mathabatha MF. 2016. Characterization and Expression Analyses of Chalcone Synthase (CHS) and Anthocyanidin Synthase (ANS) Genes in Clivia miniata. Transcriptomics 4:136 doi: 10.4172/2329-8936.1000136
|
[36] |
Viljoen CD, Snyman MC, Spies JJ. 2013. Identification and expression analysis of chalcone synthase and dihydroflavonol 4-reductase in Clivia miniata. South African Journal of Botany 87:18−21 doi: 10.1016/j.sajb.2013.03.010
|
[37] |
Lloyd A, et al. 2017. Advances in the MYB–bHLH–WD Repeat (MBW) Pigment Regulatory Model: Addition of a WRKY Factor and Co-option of an Anthocyanin MYB for Betalain Regulation. Plant and Cell Physiology 58:1431−41 doi: 10.1093/pcp/pcx075
|
[38] |
Jiang W, et al. 2015. Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis thaliana. Journal of Experimental Botany 66:7165−79 doi: 10.1093/jxb/erv413
|
[39] |
Shirley BW, Hanley S, Goodman HM. 1992. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333−47 doi: 10.1105/tpc.4.3.333
|
[40] |
Morita Y, et al. 2014. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. The Plant Journal 78:294−304 doi: 10.1111/tpj.12469
|
[41] |
Dastmalchi M, Dhaubhadel S. 2015. Soybean chalcone isomerase: evolution of the fold, and the differential expression and localization of the gene family. Planta 241:507−23 doi: 10.1007/s00425-014-2200-5
|
[42] |
Jez J, Bowman M, Dixon R, Noel J. 2000. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nature Structural & Molecular Biology 7:786−91 doi: 10.1038/79025
|
[43] |
Forkmann G, Dangelmayr B. 1980. Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochemical Genetics 18:519−27 doi: 10.1007/bf00484399
|
[44] |
Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science 196:67−76 doi: 10.1016/j.plantsci.2012.07.014
|
[45] |
Agati G, et al. 2013. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology and Biochemistry 72:35−45 doi: 10.1016/j.plaphy.2013.03.014
|
[46] |
Abeynayake SW, Panter S, Mouradov A, Spangenberg G. 2011. A high-resolution method for the localization of proanthocyanidins in plant tissues. Plant Methods 7:13 doi: 10.1186/1746-4811-7-13
|
[47] |
Hong L, et al. 2012. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta 236:141−51 doi: 10.1007/s00425-012-1598-x
|
[48] |
Sun W, et al. 2019. Chalcone Isomerase a Key Enzyme for Anthocyanin Biosynthesis in Ophiorrhiza japonica. Frontiers in Plant Science 10:865 doi: 10.3389/fpls.2019.00865
|
[49] |
Li Y, et al. 2019. The R2R3-MYB Factor FhMYB5 From Freesia hybrida Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis. Frontiers in Plant Science 9:1935 doi: 10.3389/fpls.2018.01935
|
[50] |
Li Y, et al. 2020. MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Communications Biology 3:396 doi: 10.1038/s42003-020-01134-6
|
[51] |
Li Y, et al. 2020. The Conserved and Particular Roles of the R2R3-MYB Regulator FhPAP1 from Freesia hybrida in Flower Anthocyanin Biosynthesis. Plant and Cell Physiology 61:1365−80 doi: 10.1093/pcp/pcaa065
|
[52] |
Shan X, et al. 2019. Efficient isolation of protoplasts from freesia callus and its application in transient expression assays. Plant Cell, Tissue and Organ Culture (PCTOC) 138:529−41 doi: 10.1007/s11240-019-01649-9
|
[53] |
Yoo S-D, Cho Y-H, Sheen J. 2007. Arabidopsismesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2:1565−72 doi: 10.1038/nprot.2007.199
|
[54] |
Shan X, et al. 2019. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana. Plant Physiology and Biochemistry 141:60−72 doi: 10.1016/j.plaphy.2019.05.015
|
[55] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCт Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
|
[56] |
Meng X, et al. 2019. Functional Differentiation of Duplicated Flavonoid 3-O-Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of Freesia hybrida. Frontiers in Plant Science 10:1330 doi: 10.3389/fpls.2019.01330
|
[57] |
Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1:641−6 doi: 10.1038/nprot.2006.97
|