[1] |
Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59:2321−34 doi: 10.1080/10408398.2018.1506907
|
[2] |
Yu Z, Yang Z. 2020. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition 60:844−58 doi: 10.1080/10408398.2018.1552245
|
[3] |
Sharangi AB. 2009. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Research International 42:529−35 doi: 10.1016/j.foodres.2009.01.007
|
[4] |
Zhou Y, Deng R, Xu X, Yang Z. 2020. Enzyme catalytic efficiencies and relative gene expression levels of (R)-linalool synthase and (S)-linalool synthase determine the proportion of linalool enantiomers in Camellia sinensis var. sinensis. Journal of Agricultural and Food Chemistry 68:10109−17 doi: 10.1021/acs.jafc.0c04381
|
[5] |
Zhou Y, Zeng L, Liu X, Gui J, Mei X, et al. 2017. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chemistry 231:78−86 doi: 10.1016/j.foodchem.2017.03.122
|
[6] |
Wang X, Zeng L, Liao Y, Li J, Tang J, et al. 2019. Formation of alpha-farnesene in tea (Camellia sinensis) leaves induced by herbivore-derived wounding and its effect on neighboring tea plants. International Journal of Molecular Sciences 20:4151 doi: 10.3390/ijms20174151
|
[7] |
Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. 2020. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany 71:2172−85 doi: 10.1093/jxb/erz570
|
[8] |
Zhao M, Zhang N, Gao T, Jin J, Jing T, et al. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist. 226:362−372 doi: 10.1111/nph.16364
|
[9] |
Jing T, Zhang N, Gao T, Zhao M, Jin J, et al. 2019. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis. Plant, Cell & Environment 42:1352−67 doi: 10.1111/pce.13479
|
[10] |
Ohgami S, Ono E, Horikawa M, Murata J, Totsuka K, et al. 2015. Volatile glycosylation in tea plants: Sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiology 168:464−77 doi: 10.1104/pp.15.00403
|
[11] |
Cui L, Yao S, Dai X, Yin Q, Liu Y, et al. 2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). Journal of Experimental Botany 67:2285−97 doi: 10.1093/jxb/erw053
|
[12] |
Kato M, Mizuno K, Crozier A, Fujimura T, Ashihara H. 2000. Caffeine synthase gene from tea leaves. Nature 406:956−7 doi: 10.1038/35023072
|
[13] |
Yu Z, Liao Y, Zeng L, Dong F, Watanabe N, et al. 2020. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment. Food Research International 129:108842 doi: 10.1016/j.foodres.2019.108842
|
[14] |
Cheng S, Fu X, Wang X, Liao Y, Zeng L, et al. 2017. Studies on the biochemical formation pathway of the amino acid ʟ-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry 65:7210−6 doi: 10.1021/acs.jafc.7b02437
|
[15] |
Liu G, Liu J, He Z, Wang F, Yang H, et al. 2018. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant, Cell & Environment 41:176−86 doi: 10.1111/pce.13080
|
[16] |
Wei K, Wang L, Zhang Y, Ruan L, Li H, et al. 2019. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal 97:825−40 doi: 10.1111/tpj.14161
|
[17] |
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. P. Natl. Acad. Sci. USA 115:E4151−E4158 doi: 10.1073/pnas.1719622115
|
[18] |
Song D, Feng L, Rana MM, Gao M, Wei S. 2014. Effects of catechins on Agrobacterium-mediated genetic transformation of Camellia sinensis. Plant Cell, Tissue and Organ Culture 119:27−37 doi: 10.1007/s11240-014-0511-7
|
[19] |
Alagarsamy K, Shamala LF, Wei S. 2018. Protocol: high-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis. Plant Methods 14:17 doi: 10.1186/s13007-018-0285-8
|
[20] |
Mondal T, Bhattacharya A, Ahuja P, Chand P. 2001. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Reports 20:712−20 doi: 10.1007/s002990100382
|
[21] |
Sandal I, Saini U, Lacroix B, Bhattacharya A, Ahuja PS, et al. 2007. Agrobacterium-mediated genetic transformation of tea leaf explants: effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence. Plant Cell Reports 26:169−76 doi: 10.1007/s00299-006-0211-9
|
[22] |
Dinç E, Tóth SZ, Schansker G, Ayaydin F, Kovács L, et al. 2011. Synthetic antisense oligodeoxynucleotides to transiently suppress different nucleus- and chloroplast-encoded proteins of higher plant chloroplasts. Plant Physiology 157:1628−41 doi: 10.1104/pp.111.185462
|
[23] |
Sun C, Höglund AS, Olsson H, Mangelsen E, Jansson C. 2005. Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. The Plant Journal 44:128−38 doi: 10.1111/j.1365-313X.2005.02515.x
|
[24] |
Chen Y, Guo X, Gao T, Zhang N, Wan X, et al. 2020. UGT74AF3 enzymes specifically catalyze the glucosylation of 4-hydroxy-2,5-dimethylfuran-3(2H)-one, an important volatile compound in Camellia sinensis. Horticulture Research 7:25 doi: 10.1038/s41438-020-0248-x
|
[25] |
Jin J, Zhang S, Zhao M, Jing T, Zhang N, et al. 2020. Scenarios of genes-to-terpenoids network led to the identification of a novel α/β-farnesene/β-ocimene synthase in Camellia sinensis. International Journal of Molecular Sciences 21:655 doi: 10.3390/ijms21020655
|
[26] |
Kuboi T, Suda M, Terao R, Konishi S. 1991. Efficient preparation of protoplasts from tea leaves. Tea Research Journal 1991(74):15−23 doi: 10.5979/cha.1991.74_15
|
[27] |
Nakamura Y. 1983. Isolation of protoplasts from tea plant. Tea Research Journal 1983(58):36−37 doi: 10.5979/cha.1983.58_36
|
[28] |
Peng Z, Tong H, Liang G, Shi Y, Yuan L. 2018. Protoplast isolation and fusion induced by PEG with leaves and roots of tea plant (Camellia sinensis L. O. Kuntze). Acta Agronomica Sinica 44:463−70 doi: 10.3724/SP.J.1006.2018.00463
|
[29] |
Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2:1565−72 doi: 10.1038/nprot.2007.199
|
[30] |
Welchen E, Chan RL, Gonzalez DH. 2004. The promoter of the Arabidopsis nuclear gene COX5b-1, encoding subunit 5b of the mitochondrial cytochrome c oxidase, directs tissue-specific expression by a combination of positive and negative regulatory elements. Journal of Experimental Botany 55:1997−2004 doi: 10.1093/jxb/erh223
|
[31] |
Zhou Y, Peng Q, Zhang L, Cheng S, Zeng L, et al. 2019. Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers. Food Chemistry 280:27−33 doi: 10.1016/j.foodchem.2018.12.035
|
[32] |
Wei Z, Xu Z, Xu N, Huang M. 1991. Mesophyll protoplast culture and plant regeneration of oriental planetree (Platanus orientalis). Journal of Integrative Plant Biology 33:813−8
|
[33] |
Oka S, Ohyama K. 1985. Plant regeneration from leaf mesophyll protoplasts of Broussonetia kazinoki Sieb. (Paper Mulberry). Journal of Plant Physiology 119:455−60 doi: 10.1016/S0176-1617(85)80010-9
|
[34] |
Guo J, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, et al. 2012. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS One 7:e44908 doi: 10.1371/journal.pone.0044908
|
[35] |
Wei Z, Xu Z, Huang J, Xu N, Huang M. 1994. Plants regenerated from mesophyll protoplasts of white mulberry. Cell Research 4:183−9 doi: 10.1038/cr.1994.19
|
[36] |
Rahmani MS, Pijut PM, Shabanian N. 2016. Protoplast isolation and genetically true-to-type plant regeneration from leaf- and callus-derived protoplasts of Albizia julibrissin. Plant Cell, Tissue and Organ Culture 127:475−88 doi: 10.1007/s11240-016-1072-8
|
[37] |
Xu X, Xie G, He L, Zhang J, Xu X, et al. 2013. Differences in oxidative stress, antioxidant systems, and microscopic analysis between regenerating callus-derived protoplasts and recalcitrant leaf mesophyll-derived protoplasts of Citrus reticulata Blanco. Plant Cell, Tissue and Organ Culture 114:161−9 doi: 10.1007/s11240-013-0312-4
|
[38] |
Reustle G, Harst M, Alleweldt G. 1995. Plant regeneration of grapevine (Vitis sp.) protoplasts isolated from embryogenic tissue. Plant Cell Reports 15:238−41 doi: 10.1007/BF00193727
|
[39] |
Tan B, Xu M, Chen Y, Huang M. 2013. Transient expression for functional gene analysis using Populus protoplasts. Plant Cell, Tissue and Organ Culture 114:11−18 doi: 10.1007/s11240-013-0299-x
|
[40] |
Papadakis AK, Roubelakis-Angelakis KA. 1999. The generation of active oxygen species differs in tobacco and grapevine mesophyll protoplasts. Plant Physiology 121:197−206 doi: 10.1104/pp.121.1.197
|
[41] |
Shen Y, Meng D, McGrouther K, Zhang J, Cheng L. 2017. Efficient isolation of Magnolia protoplasts and the application to subcellular localization of MdeHSF1. Plant Methods 13:44 doi: 10.1186/s13007-017-0193-3
|
[42] |
Zhao F, Li Y, Hu Y, Gao Y, Zhang X, et al. 2016. A highly efficient grapevine mesophyll protoplast system for transient gene expression and the study of disease resistance proteins. Plant Cell, Tissue and Organ Culture 125:43−57 doi: 10.1007/s11240-015-0928-7
|
[43] |
Marion J, Bach L, BellecY, Meyer C, Gissot L, et al. 2008. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. The Plant Journal 56:169−79 doi: 10.1111/j.1365-313X.2008.03596.x
|
[44] |
Moore JP, Westall KL, Ravenscroft N, Farrant JM, Lindsey GG, et al. 2004. The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. The Biochemical Journal 385:301−8 doi: 10.1042/BJ20040499
|
[45] |
Yoruk R, Marshall MR. 2003. Physicochemical properties and function of plant polyphenol oxidase: a review. Journal of Food Biochemistry 27:361−422 doi: 10.1111/j.1745-4514.2003.tb00289.x
|
[46] |
Xu H, Wang Y, Chen Y, Zhang P, Zhao Y. 2016. Subcellular localization of galloylated catechins in tea plants [Camellia sinensis (L.) O. Kuntze] assessed via immunohistochemistry. Frontiers in Plant Science 7:728 doi: 10.3389/fpls.2016.00728
|
[47] |
Mayer AM. 2006. Polyphenol oxidases in plants and fungi: going places? A review Phytochemistry 67:2318−31 doi: 10.1016/j.phytochem.2006.08.006
|
[48] |
Fu X, Liao Y, Cheng S, Xu X, Grierson D, et al. 2021. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of ʟ-theanine biosynthesis in tea. Plant Biotechnology Journal 19:98−108 doi: 10.1111/pbi.13445
|
[49] |
Zhou X, Zeng L, Chen Y, Wang X, Liao Y, et al. 2020. Metabolism of gallic acid and its distributions in tea (Camellia sinensis) plants at the tissue and subcellular levels. International Journal of Molecular Sciences 21:5684 doi: 10.3390/ijms21165684
|
[50] |
Liao Y, Fu X, Zeng L, Yang Z. 2020. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2020.1819195
|
[51] |
Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, et al. 2006. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Molecular Plant Pathology 7:417−27 doi: 10.1111/j.1364-3703.2006.00346.x
|
[52] |
Zhai Z, Sooksa-nguan T, Vatamaniuk OK. 2009. Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiology 149:642−52 doi: 10.1104/pp.108.130260
|