[1] |
Clune J, Mouret JB, Lipson H. 2013. The evolutionary origins of modularity. Proc. Biol. Sci. 280:20122863 doi: 10.1098/rspb.2012.2863
|
[2] |
Espinosa-Soto C, Wagner A, Babu MM. 2010. Specialization can drive the evolution of modularity. PLoS Computational Biology 6:e1000719 doi: 10.1371/journal.pcbi.1000719
|
[3] |
Esteve-Altava B. 2017. In search of morphological modules: a systematic review. Biol. Rev. Camb. Philos. Soc. 92:1332−47 doi: 10.1111/brv.12284
|
[4] |
Goswami A, Binder WJ, Meachen J, O’Keefe FR. 2015. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics. Proc Natil. Acad. Sci. U. S. A. 112:4891−6 doi: 10.1073/pnas.1403667112
|
[5] |
Klingenberg CP. 2008. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39:115−32 doi: 10.1146/annurev.ecolsys.37.091305.110054
|
[6] |
Klingenberg CP. 2014. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130249 doi: 10.1098/rstb.2013.0249
|
[7] |
Melo D, Marroig G. 2015. Directional selection can drive the evolution of modularity in complex traits. Proc. Natl. Acad. Sci. U. S. A. 112:470−5 doi: 10.1073/pnas.1322632112
|
[8] |
Wagner GP, Pavlicev M, Cheverud JM. 2007. The road to modularity. Nature Reviews Genetics 8:921−31 doi: 10.1038/nrg2267
|
[9] |
Lorenz DM, Jeng A, Deem MW. 2011. The emergence of modularity in biological systems. Physics of Life Reviews 8:129−60 doi: 10.1016/j.plrev.2011.02.003
|
[10] |
Liu B, He J, Zeng F, Lei J, Arndt SK. 2016. Life span and structure of ephemeral root modules of different functional groups from a desert system. The New Phytologist 211:103−12 doi: 10.1111/nph.13880
|
[11] |
Wang L, Zhao C, Li J, Liu Z, Wang J. 2015. Root plasticity of Populus euphratica seedlings in response to different water table depths and contrasting sediment types. PloS One 10:e0118691 doi: 10.1371/journal.pone.0118691
|
[12] |
Han Y, Wang W, Sun J, Ding M, Zhao R, et al. 2013. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. Journal of Experimental Botany 64:4225−38 doi: 10.1093/jxb/ert229
|
[13] |
Li Z, Zheng C. 2005. Structural characteristics and eco-adaptability of heteromorphic leaves of Populus euphratica. Forestry Studies in China 7:11−5 doi: 10.1007/s11632-005-0050-8
|
[14] |
Liu Y, Li X, Chen G, Li M, Liu M, et al. 2015. Epidermal micromorphology and mesophyll structure of Populus euphratica heteromorphic leaves at different development stages. Plos One 10:e0137701 doi: 10.1371/journal.pone.0137701
|
[15] |
Callebaut W, Rasskin-Gutman D. 2005. Modularity: understanding the development and evolution of natural complex systems. Cambridge: The MIT Press
|
[16] |
Schlosser G, Wagner GP. 2004. Modularity in development and evolution. Chicago: University of Chicago Press
|
[17] |
Bolker JA. 2000. Modularity in development and why it matters to Evo-Devo. American Zoologist 40:770−6 doi: 10.1093/icb/40.5.770
|
[18] |
Alexander-Bloch A, Giedd JN, Bullmore ET. 2013. Imaging structural co-variance between human brain regions. Nature Reviews Neuroscience 14:322−36 doi: 10.1038/nrn3465
|
[19] |
Armbruster WS, Pélabon C, Bolstad GH, Hansen TF. 2014. Integrated phenotypes: understanding trait covariation in plants and animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130245 doi: 10.1098/rstb.2013.0245
|
[20] |
Ehrich TH, Vaughn TT, Koreishi S, Linsey RB, Pletscher LS, et al. 2003. Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology Part B, Molecular and Developmental Evolution 296B:58−79 doi: 10.1002/jez.b.9
|
[21] |
Mitteroecker P. 2009. The developmental basis of variational modularity: insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology 36:377−85 doi: 10.1007/s11692-009-9075-6
|
[22] |
Morrissey MB. 2015. Evolutionary quantitative genetics of nonlinear developmental systems. Evolution 69:2050−66 doi: 10.1111/evo.12728
|
[23] |
Watson RA, Wagner GP, Pavlicev M, Weinreich DM, Mills R. 2014. The evolution of phenotypic correlations and “developmental memory”. Evolution 68:1124−38 doi: 10.1111/evo.12337
|
[24] |
Edwards CE, Weinig C. 2011. The quantitative-genetic and QTL architecture of trait integration and modularity in Brassica rapa across simulated seasonal settings. Heredity 106:661−77 doi: 10.1038/hdy.2010.103
|
[25] |
Konuma J, Yamamoto S, Sota T. 2014. Morphological integration and pleiotropy in the adaptive body shape of the snail-feeding carabid beetle Damaster blaptoides. Molecular Ecology 23:5843−54 doi: 10.1111/mec.12976
|
[26] |
Wang Z, Liao B, Zhang J. 2010. Genomic patterns of pleiotropy and the evolution of complexity. Proc. Natl. Acad. Sci. U. S. A. 107:18034−9 doi: 10.1073/pnas.1004666107
|
[27] |
Melo D, Porto A, Cheverud JM, Marroig G. 2016. Modularity: Genes, Development, and Evolution. Annu. Rev. Ecol. Evol. Syst. 47:463−86 doi: 10.1146/annurev-ecolsys-121415-032409
|
[28] |
Schleuning M, Ingmann L, Strauss R, Fritz SA, Dalsgaard B, et al. 2014. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecology Letters 17:454−63 doi: 10.1111/ele.12245
|
[29] |
Pfeiffer T, Schuster S. 2005. Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem. Sci. 30:20−5 doi: 10.1016/j.tibs.2004.11.006
|
[30] |
Zhang L, Tao H, Holt CE, Harris WA, Poo M. 1998. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37−44 doi: 10.1038/25665
|
[31] |
Axelrod R, Hamilton WD. 1981. The evolution of cooperation. Science 211:1390−6 doi: 10.1126/science.7466396
|
[32] |
Pfeiffer T, Schuster S, Bonhoeffer S. 2001. Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504−7 doi: 10.1126/science.1058079
|
[33] |
Smith JM, Price GR. 1973. The Logic of Animal Conflict. Nature 246:15−8 doi: 10.1038/246015a0
|
[34] |
Fu L, Sun L, Hao H, Jiang L, Zhu S, et al. 2018. How trees allocate carbon for optimal growth: insight from a game-theoretic model. Brief. Bioinform. 19:593−602 doi: 10.1093/bib/bbx003
|
[35] |
Liao D, Tlsty TD. 2014. Evolutionary game theory for physical and biological scientists. I. Training and validating population dynamics equations. Interface Focus 4:20140037 doi: 10.1098/rsfs.2014.0037
|
[36] |
Wang Q, Gosik K, Xing S, Jiang L, Sun L, et al. 2017. Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition. Physics of Life Reviews 20:126−37 doi: 10.1016/j.plrev.2016.11.001
|
[37] |
Zhu X, Jiang L, Ye M, Sun L, Gragnoli C, et al. 2016. Integrating evolutionary game theory into mechanistic genotype-phenotype mapping. Trends Genet. 32:256−68 doi: 10.1016/j.tig.2016.02.004
|
[38] |
Leamy LJ, Routman EJ, Cheverud JM. 1999. Quantitative trait loci for early- and late-developing skull characters in Mice: A Test of the Genetic Independence Model of Morphological Integration. The American Naturalist 153:201−14 doi: 10.1086/303165
|
[39] |
Bardgett RD, Mommer L, De Vries FT. 2014. Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution 29:692−9 doi: 10.1016/j.tree.2014.10.006
|
[40] |
Casper BB, Jackson RB. 1997. Plant competition underground. Annu. Rev. Ecol. Syst. 28:545−70 doi: 10.1146/annurev.ecolsys.28.1.545
|
[41] |
Mcnickle GG, Dybzinski R. 2013. Game theory and plant ecology. Ecology Letters 16:545−55 doi: 10.1111/ele.12071
|
[42] |
Riechert SE, Hammerstein P. 1983. Game Theory in the Ecological Context. Annu. Rev. Ecol. Evol. S. 14:377−409 doi: 10.1146/annurev.es.14.110183.002113
|
[43] |
West GB, Brown JH, Enquist BJ. 2001. A general model for ontogenic growth. Nature 413:628−31 doi: 10.1038/35098076
|
[44] |
Wu R, Cao J, Huang Z, Wang Z, Gai J, et al. 2011. Systems mapping: how to improve the genetic mapping of complex traits through design principles of biological systems. BMC Systems Biology 5:84 doi: 10.1186/1752-0509-5-84
|
[45] |
Soleimani A, Etemad V, Calagari M, Namiranian M, Shirvani A. 2014. Influence of climatic factors on fruit morphological traits in Populus euphratica Oliv. Ann. For. Res. 57:31−8 doi: 10.15287/afr.2014.188
|
[46] |
Zhang M, Bo W, Xu F, Li H, Ye M, et al. 2017. The genetic architecture of shoot-root covariation during seedling emergence of a desert tree, Populus euphratica. The Plant Journal 90:918−28 doi: 10.1111/tpj.13518
|
[47] |
Berg RL. 1960. The ecological significance of correlation pleiades. Evolution 14:171−80 doi: 10.1111/j.1558-5646.1960.tb03076.x
|
[48] |
Corominas-Murtra B, Goñi J, Solé RV, Rodríguez-Caso C. 2013. On the origins of hierarchy in complex networks. Proc. Natl. Acad. Sci. U. S. A. 110:13316−21 doi: 10.1073/pnas.1300832110
|
[49] |
Fletcher RJ, Revell A, Reichert BE, Kitchens WM, Dixon JD, et al. 2013. Network modularity reveals critical scales for connectivity in ecology and evolution. Nature Communications 4:2572 doi: 10.1038/ncomms3572
|
[50] |
Andersson O, Wengström E. 2011. Credible communication and cooperation: experimental evidence for multi-stage games. J. Econ. Behav. Organ. 81:207−19 doi: 10.1016/j.jebo.2011.10.002
|
[51] |
Shaked A, Sutton J. 1982. Relaxing price competition through product differentiation. The Review of Economic Studies 49:3−13 doi: 10.2307/2297136
|
[52] |
Bjedov T, Madiès T, Villeval MC. 2016. Communication and coordination in a two-stage game. Economic Inquiry 54:1519−40 doi: 10.1111/ecin.12325
|
[53] |
Gabszewicz J, Thisse JF. 1979. Price competition, quality and income disparities. Journal of Economic Theory 20:340−59 doi: 10.1016/0022-0531(79)90041-3
|
[54] |
Li H, Huang Z, Gai J, Wu S, Zeng Y, et al. 2007. A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry. PLoS One 2:e1245 doi: 10.1371/journal.pone.0001245
|
[55] |
Huang Z, Tong C, Bo W, Pang X, Wang Z, et al. 2014. An allometric model for mapping seed development in plants. Briefings in Bioinformatics 15:562−70 doi: 10.1093/bib/bbt019
|
[56] |
Irschick DJ, Albertson RC, Brennan P, Podos J, Johnson NA, et al. 2013. Evo-devo beyond morphology: from genes to resource use. Trends Ecol. Evol. 28:267−73 doi: 10.1016/j.tree.2012.12.004
|
[57] |
Parsons KJ, Márquez E, Albertson RC. 2012. Constraint and opportunity: The genetic basis and evolution of modularity in the cichlid mandible. The American Naturalist 179:64−78 doi: 10.1086/663200
|
[58] |
Salazar-Ciudad I, Marín-Riera M. 2013. Adaptive dynamics under development-based genotype-phenotype maps. Nature 497:361−4 doi: 10.1038/nature12142
|
[59] |
Sun L, Wu R. 2015. Mapping complex traits as a dynamic system. Physics of Life Reviews 13:155−85 doi: 10.1016/j.plrev.2015.02.007
|
[60] |
Wang Z, Pang X, Wu W, Wang J, Wang Z, et al. 2014. Modeling phenotypic plasticity in growth trajectories: A statistical framework. Evolution 68:81−91 doi: 10.1111/evo.12263
|
[61] |
Jiang L, Shi H, Sang M, Zheng C, Cao Y, et al. 2019. A computational model for inferring QTL control networks underlying developmental covariation. Front. Plant Sci. 10:1557 doi: 10.3389/fpls.2019.01557
|
[62] |
Wu R, Jiang L. 2021. Recovering dynamic networks in big static datasets. Physics Reports In Press doi: 10.1016/j.physrep.2021.01.003
|
[63] |
Pilosof S, Porter MA, Pascual M, Kéfi S. 2017. The multilayer nature of ecological networks. Nature Ecology & Evolution 1:101 doi: 10.1038/s41559-017-0101
|
[64] |
Ancel LW, Fontana W. 2000. Plasticity, evolvability, and modularity in RNA. Journal of Experimental Zoology 288:242−83 doi: 10.1002/1097-010X(20001015)288:3<242::AID-JEZ5>3.0.CO;2-O
|
[65] |
Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, et al. 2004. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88−93 doi: 10.1038/nature02555
|