[1] |
Wolter F, Schindele P, Puchta H. 2019. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology 19:176 doi: 10.1186/s12870-019-1775-1
|
[2] |
Lidder P, Sonnino A. 2012. Biotechnologies for the management of genetic resources for food and agriculture. In Advances in Genetics. Eds. Goodwin SF, Friedmann T, Dunlap JC. 78:217. Amsterdam: Elsevier. pp. 1−167 https://doi.org/10.1016/B978-0-12-394394-1.00001-8
|
[3] |
Zhang H, Zhang J, Wei P, Zhang B, Gou F, et al. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal 12(6):797−807 doi: 10.1111/pbi.12200
|
[4] |
Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667−97 doi: 10.1146/annurev-arplant-050718-100049
|
[5] |
Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H. 2018. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Journal of Integrative Plant Biology 60(12):1127−53 doi: 10.1111/jipb.12734
|
[6] |
Erpen-Dalla Corte L, Mahmoud LM, Moraes TS, Mou Z, Grosser JW, et al. 2019. Development of improved fruit, vegetable, and ornamental crops using the CRISPR/Cas9 genome editing technique. Plants 8(12):601 doi: 10.3390/plants8120601
|
[7] |
Zhang Y, Massel K, Godwin ID, Gao C. 2018. Applications and potential of genome editing in crop improvement. Genome Biology 19:210 doi: 10.1186/s13059-018-1586-y
|
[8] |
Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. 2018. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research 27:25−38 doi: 10.1007/s11248-017-0051-0
|
[9] |
Xu J, Kang BC, Naing AH, Bae S, Kim JS, et al. 2020. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnology Journal 18(1):287−97 doi: 10.1111/pbi.13197
|
[10] |
Nishihara M, Higuchi A, Watanabe A, Tasaki K. 2018. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology 18:331 doi: 10.1186/s12870-018-1539-3
|
[11] |
Chen J, McConnell DB, Henny RJ, Norman DJ. 2005. The foliage plant industry. In Horticultural Reviews. Ed. Janick J. 31: i−414. Hoboken, New Jersey: John Wiley & Sons, Ltd. pp. 47−112 https://doi.org/10.1002/9780470650882.ch2
|
[12] |
Nishitani C, Hirai N, Komori S, Wada M, Okada K, et al. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports 6:31481 doi: 10.1038/srep31481
|
[13] |
Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, et al. 2017. CRISPR/Cas9-mediated targeted mutagenesis in grape. Plos One 12(5):e0177966 doi: 10.1371/journal.pone.0177966
|
[14] |
Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, et al. 2019. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science 10:40 doi: 10.3389/fpls.2019.00040
|
[15] |
Yu F, Fu A, Aluru M, Park S, Xu Y, et al. 2007. Variegation mutants and mechanisms of chloroplast biogenesis. Plant, Cell & Environment 30(3):350−65 doi: 10.1111/j.1365-3040.2006.01630.x
|
[16] |
Takechi K, Sodmergen, Murata M, Motoyoshi F, Sakamoto W. 2000. The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant and Cell Physiology 41(12):1334−46 doi: 10.1093/pcp/pcd067
|
[17] |
Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, et al. 2018. High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3 Genes|Genomes|Genetics 8(5):1513−21 doi: 10.1534/g3.117.300396
|
[18] |
Durr J, Papareddy R, Nakajima K, Gutierrez-Marcos J. 2018. Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9. Scientific Reports 8:4443 doi: 10.1038/s41598-018-22667-1
|
[19] |
Wu R, Lucke M, Jang YT, Zhu W, Symeonidi E, et al. 2018. An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant Methods 14:65 doi: 10.1186/s13007-018-0330-7
|
[20] |
Gao X, Chen J, Dai X, Zhang D, Zhao Y. 2016. An effective strategy for reliably isolating heritable and Cas9-Free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiology 171(3):1794−1800 doi: 10.1104/pp.16.00663
|
[21] |
Fauser F, Schiml S, Puchta H. 2014. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal 79(2):348−59 doi: 10.1111/tpj.12554
|
[22] |
Ma X, Liu YG. 2016. CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Curr. Protoc. Mol. Biol. 115:31.6.1−31.6.21 doi: 10.1002/cpmb.10
|
[23] |
Li ZT, Dhekney SA, Gray DJ. 2011. Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco. Transgenic Research 20:1087−97 doi: 10.1007/s11248-010-9482-6
|
[24] |
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications 8:14953 doi: 10.1038/ncomms14953
|
[25] |
Lei Y, Lu L, Liu H, Li S, Xing F, et al. 2014. CRISPR-P: a web tool for synthetic single-guide rna design of crispr-system in plants. Molecular Plant 7(9):1494−6 doi: 10.1093/mp/ssu044
|
[26] |
Concordet JP, Haeussler M. 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research 46(W1):W242−W245 doi: 10.1093/nar/gky354
|
[27] |
Michelmore R, Marsh E, Seely S, Landry B. 1987. Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens. Plant Cell Reports 6:439−42 doi: 10.1007/BF00272777
|
[28] |
Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19(6):1349 doi: 10.1093/nar/19.6.1349
|
[29] |
Madeira F, Park YM, Lee J, Buso N, Gur T, et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47(W1):W636−W641 doi: 10.1093/nar/gkz268
|
[30] |
Chomczynski P, Wilfinger W, Kennedy A, Rymaszewski M, Mackey K. 2010. RNAzol® RT: a new single-step method for isolation of RNA. Nature Methods 7:4−5 doi: 10.1038/nmeth.f.315
|
[31] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6):1547−9 doi: 10.1093/molbev/msy096
|
[32] |
Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research 47(W1):W256−W259 doi: 10.1093/nar/gkz239
|
[33] |
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant physiology 24(1):1−15 doi: 10.1104/pp.24.1.1
|
[34] |
Stirbet A, Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology 104(1−2):236−57 doi: 10.1016/j.jphotobiol.2010.12.010
|
[35] |
Srivastava A, Strasser RJ, Govindjee. 1999. Greening of peas: parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37(3):365 doi: 10.1023/A:1007199408689
|
[36] |
Ahmed M, Kim DR. 2018. pcr: an R package for quality assessment, analysis and testing of qPCR data. PeerJ 6:e4473 doi: 10.7717/peerj.4473
|
[37] |
Gleave AP. 1992. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology 20:1203−7 doi: 10.1007/BF00028910
|
[38] |
Meyer P. 1995. Understanding and controlling transgene expression. Trends in Biotechnology 13(9):332−7 doi: 10.1016/S0167-7799(00)88977-5
|
[39] |
Gelvin SB. 2003. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews 67(1):16−37 doi: 10.1128/MMBR.67.1.16-37.2003
|
[40] |
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. 2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39 doi: 10.1186/1746-4811-9-39
|
[41] |
Xie K, Minkenberg B, Yang Y. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U. S. A. 112(11):3570−5 doi: 10.1073/pnas.1420294112
|
[42] |
Zaltsman A, Ori N, Adam Z. 2005. Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in Arabidopsis. The Plant Cell 17(10):2782−90 doi: 10.1105/tpc.105.035071
|
[43] |
Tycko J, Myer VE, Hsu PD. 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Molecular cell 63(3):355−70 doi: 10.1016/j.molcel.2016.07.004
|
[44] |
Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, et al. 2015. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome biology 16:258 doi: 10.1186/s13059-015-0826-7
|
[45] |
Feng C, Su H, Bai H, Wang R, Liu Y, et al. 2018. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant biotechnology journal 16(11):1848−57 doi: 10.1111/pbi.12920
|
[46] |
Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, et al. 2019. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant biotechnology journal 17(2):362−72 doi: 10.1111/pbi.12982
|
[47] |
Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, et al. 2020. Plant gene editing through de novo induction of meristems. Nature Biotechnology 38:84−9 doi: 10.1038/s41587-019-0337-2
|
[48] |
Tian S, Jiang L, Cui X, Zhang J, Guo S, et al. 2018. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Reports 37(9):1353−6 doi: 10.1007/s00299-018-2299-0
|
[49] |
Milner MJ, Craze M, Hope MS, Wallington EJ. 2020. Turning up the temperature on crispr: increased temperature can improve the editing efficiency of wheat using CRISPR/Cas9. Frontiers in Plant Science 11:583374 doi: 10.3389/fpls.2020.583374
|
[50] |
LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, et al. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. The Plant Journal 93(2):377−86 doi: 10.1111/tpj.13782
|
[51] |
Xiang G, Zhang X, An C, Cheng C, Wang H. 2017. Temperature effect on CRISPR-Cas9 mediated genome editing. Journal of Genetics and Genomics 44(4):199−205 doi: 10.1016/j.jgg.2017.03.004
|
[52] |
Rapacz M, Wójcik-Jagła M, Fiust A, Kalaji HM, Kościelniak J. 2019. Genome-wide associations of chlorophyll fluorescence OJIP transient parameters connected with soil drought response in barley. Frontiers in Plant Science 10:78 doi: 10.3389/fpls.2019.00078
|