[1] |
Pandolfini T. 2009. Seedless fruit production by hormonal regulation of fruit set. Nutrients 1:168−77 doi: 10.3390/nu1020168
|
[2] |
Varoquaux F, Blanvillain R, Delseny M, Gallois P. 2000. Less is better: new approaches for seedless fruit production. Trends in Biotechnology 18:233−42 doi: 10.1016/S0167-7799(00)01448-7
|
[3] |
Wang X, Cheng Z, Zhi S, Xu F. 2016. Breeding triploid plants: a review. Czech Journal of Genetics and Plant Breeding 52:41−54 doi: 10.17221/151/2015-CJGPB
|
[4] |
Causier B, Schwarz-Sommer Z, Davies B. 2010. Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology 21:73−9 doi: 10.1016/j.semcdb.2009.10.005
|
[5] |
Honma T, Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525−9 doi: 10.1038/35054083
|
[6] |
Bowman JL, Smyth DR, Meyerowitz EM. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1−20 doi: 10.1242/dev.112.1.1
|
[7] |
Pan IL, McQuinn R, Giovannoni JJ, Irish VF. 2010. Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany 61:1795−806 doi: 10.1093/jxb/erq046
|
[8] |
Gimenez E, Castañeda L, Pineda B, Pan IL, Moreno V, et al. 2016. TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Molecular Biology 91:513−31 doi: 10.1007/s11103-016-0485-4
|
[9] |
Klocko AL, Borejsza-Wysocka E, Brunner AM, Shevchenko O, Aldwinckle H, et al. 2016. Transgenic suppression of AGAMOUS genes in apple reduces fertility and increases floral attractiveness. PLoS One 11:e0159421 doi: 10.1371/journal.pone.0159421
|
[10] |
Ó’Maoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, et al. 2013. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. The Plant Cell 25:2482−503 doi: 10.1105/tpc.113.113209
|
[11] |
Chen D, Yan W, Fu L, Kaufmann K. 2018. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nature Communications 9:4534 doi: 10.1038/s41467-018-06772-3
|
[12] |
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL et al. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766−70 doi: 10.1038/35008089
|
[13] |
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−8 doi: 10.1038/nature01741
|
[14] |
Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, et al. 2005. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209−23 doi: 10.1534/genetics.104.037770
|
[15] |
Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, et al. 2009. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biology 7:e1000090 doi: 10.1371/journal.pbio.1000090
|
[16] |
Rümpler F, Theißen G, Melzer R. 2018. A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors. Journal of Experimental Botany 69:1943−54 doi: 10.1093/jxb/ery063
|
[17] |
Ireland HS, Yao J, Tomes S, Sutherland PW, Nieuwenhuizen N, et al. 2013. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. The Plant Journal 73:1044−56 doi: 10.1111/tpj.12094
|
[18] |
Fuentes S, Vivian-Smith A. 2018. Fertilization and Fruit Initiation. In Annual Plant Reviews online. Ed. Roberts JA. pp. 107−71 https://doi.org/10.1002/9781119312994.apr0411
|
[19] |
Joldersma D, Liu Z. 2018. The making of virgin fruit: the molecular and genetic basis of parthenocarpy. Journal of Experimental Botany 69:955−62 doi: 10.1093/jxb/erx446
|
[20] |
Watanabe M, Segawa H, Murakami M, Sagawa S, Komori S, et al. 2008. Effects of plant growth regulators on fruit set and fruit shape of parthenocarpic apple fruits. Journal of the Japanese Society for Horticultural Science 77:350−57 doi: 10.2503/jjshs1.77.350
|
[21] |
Bangerth F, Schröder M. 1994. Strong synergistic effects of gibberellins with the synthetic cytokinin N-(2-chloro-4-pyridyl)-N-phenylurea on parthenocarpic fruit set and some other fruit characteristics of apple. Plant Growth Regulation 15:293−302 doi: 10.1007/BF00029902
|
[22] |
Galimba KD, Bullock DG, Dardick C, Liu Z, Callahanet AM. 2019. Gibberellic acid induced parthenocarpic 'Honeycrisp' apples (Malus domestica) exhibit reduced ovary width and lower acidity. Horticultural Research 6:41 doi: 10.1038/s41438-019-0124-8
|
[23] |
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics 42:833−9 doi: 10.1038/ng.654
|
[24] |
van der Linden CG, Vosman B, Smulders MJM. 2002. Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. Journal of Experimental Botany 53:1025−36 doi: 10.1093/jexbot/53.371.1025
|
[25] |
Yao J, Dong Y, Kvarnheden A, Morris B. 1999. Seven MADS-box genes in apple are expressed in different parts of the fruit. Journal of the American Society for Horticultural Science 124:8−13 doi: 10.21273/JASHS.124.1.8
|
[26] |
Roeder AHK, Yanofsky MF. 2006. Fruit Development in Arabidopsis. The Arabidopsis Book 2006:(2006 doi: 10.1199/tab.0075
|
[27] |
de Folter S, Busscher J, Colombo L, Losa A, Angenent GC. 2004. Transcript profiling of transcription factor genes during silique development in Arabidopsis. Plant molecular biology 56:351−66 doi: 10.1007/s11103-004-3473-z
|
[28] |
Sotelo-Silveira M, Marsch-Martinez N, de Folter S. 2014. Unraveling the signal scenario of fruit set. Planta 239:1147−58 doi: 10.1007/s00425-014-2057-7
|
[29] |
Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM. 2006. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. The Plant Cell 18:1873−86 doi: 10.1105/tpc.105.037192
|
[30] |
De Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezenet WH. 2009. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. The Plant Journal 57:160−70 doi: 10.1111/j.1365-313X.2008.03671.x
|
[31] |
Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, et al. 2012. A genomics approach to understanding the role of auxin in apple (Malus × domestica) fruit size control. BMC Plant Biology 12:7 doi: 10.1186/1471-2229-12-7
|
[32] |
Marti C, Orzáez D, Ellul P, Moreno V, Carbonell J, et al. 2007. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. The Plant Journal 52:865−76 doi: 10.1111/j.1365-313X.2007.03282.x
|
[33] |
Foster T, Kirk C, Jones WT, Allan AC, Espley R, et al. 2007. Characterisation of the DELLA subfamily in apple (Malus × domestica Borkh.). Tree Genetics & Genomes 3:187−97 doi: 10.1007/s11295-006-0047-z
|
[34] |
Shang E, Ito T, Sun B. 2019. Control of floral stem cell activity in Arabidopsis. Plant Signaling & Behavior 14:1659706 doi: 10.1080/15592324.2019.1659706
|
[35] |
Johnston JW, Gunaseelan K, Pidakala P, Wang M, Schaffer RJ. 2009. Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. Journal of Experimental Botany 60:2689−99 doi: 10.1093/jxb/erp122
|
[36] |
Ishida BK, Jenkins SM, Say B. 1998. Induction of AGAMOUS gene expression plays a key role in ripening of tomato sepals in vitro. Plant Molecular Biology 36:733−9 doi: 10.1023/A:1005941330004
|
[37] |
Liu Z, Ma H, Jung S, Main D, Guo L, et al. 2020. Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annual Review of Plant Biology 71:547−73 doi: 10.1146/annurev-arplant-111119-021700
|
[38] |
Yao J, Xu J, Cornille A, Tomes S, Karunairetnam S, et al. 2015. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. The Plant Journal 84:417−27 doi: 10.1111/tpj.13021
|
[39] |
McAtee P, Karim S, Schaffer R, David K. 2013. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers In Plant Science 4:79 doi: 10.3389/fpls.2013.00079
|
[40] |
Hershkovitz V, Friedman H, Goldschmidt EE, Pesis E. 2010. Ethylene regulation of avocado ripening differs between seeded and seedless fruit. Postharvest Biology and Technology 56:138−46 doi: 10.1016/j.postharvbio.2009.12.012
|
[41] |
Gouthu S, Deluc LG. 2015. Timing of ripening initiation in grape berries and its relationship to seed content and pericarp auxin levels. BMC Plant Biology 15:46 doi: 10.1186/s12870-015-0440-6
|
[42] |
Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, et al. 2006. Analyses of expressed sequence tags from apple. Plant Physiology 141:147−66 doi: 10.1104/pp.105.076208
|
[43] |
Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, et al. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant Journal 49:414−27 doi: 10.1111/j.1365-313X.2006.02964.x
|
[44] |
Yao J, Cohen D, Atkinson R, Richardson K, Morris B. 1995. Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Reports 14:407−12 doi: 10.1007/BF00234044
|
[45] |
O'Brien TP, McCully ME. 1981. The study of plant structure: principles and selected methods. Melbourne: Termarcarphi.
|
[46] |
Zhang L, Hu J, Han X, Li J, Gao Y, et al. 2019. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications 10:1494 doi: 10.1038/s41467-019-09518-x
|
[47] |
Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology 52:696−704 doi: 10.1080/10635150390235520
|
[48] |
Gambino G, Perrone I, Gribaudo I. 2008. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis 19:520−5 doi: 10.1002/pca.1078
|
[49] |
Zhong S, Joung JG, Zheng Y, Chen Y, Liu B, et al. 2011. High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harbor Protocols 2011:940−9 doi: 10.1101/pdb.prot5652
|
[50] |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21 doi: 10.1093/bioinformatics/bts635
|
[51] |
Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106 doi: 10.1038/ng.3886
|
[52] |
R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org
|