[1] |
Hideg É, Jansen MAK, Strid Å. 2013. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends in Plant Science 18:107−15 doi: 10.1016/j.tplants.2012.09.003
|
[2] |
Lee JH. 2016. UV-B signal transduction pathway in Arabidopsis. Journal of Plant Biology 59:223−30 doi: 10.1007/s12374-016-0155-8
|
[3] |
McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M, et al. 2011. Ozone depletion and climate change: impacts on UV radiation. Photochemical and Photobiological Sciences 10:182−98 doi: 10.1039/c0pp90034f
|
[4] |
Albert KR, Mikkelsen TN, Ro-Poulsen H, Arndal MF, Michelsen A. 2011. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica. Environmental and Experimental Botany 73:10−8 doi: 10.1016/j.envexpbot.2011.08.003
|
[5] |
Jordan BR. 2002. Review: Molecular response of plant cells to UV-B stress. Functional Plant Biology 29:909−16 doi: 10.1071/FP02062
|
[6] |
Olivares-Soto H, Bastías RM, Calderón-Orellana A, López MD. 2020. Sunburn control by nets differentially affects the antioxidant properties of fruit peel in 'Gala' and 'Fuji' apples. Horticulture, Environment and Biotechnology 61:241−54 doi: 10.1007/s13580-020-00226-w
|
[7] |
Hofmann RW, Swinny EE, Bloor SJ, Markham KR, Ryan KG, et al. 2000. Responses of nine Trifolium repens L. populations to Ultraviolet-B radiation: differential flavonol glycoside accumulation and biomass production. Annals of Botany 86:527−37 doi: 10.1006/anbo.2000.1216
|
[8] |
Jansen MAK, Bornman JF. 2012. UV-B radiation: from generic stressor to specific regulator. Physiologia Plantarum 145:501−4 doi: 10.1111/j.1399-3054.2012.01656.x
|
[9] |
Wargent JJ, Jordan BR. 2013. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. New Phytologist 197:1058−76 doi: 10.1111/nph.12132
|
[10] |
Kataria S, Jajoo A, Guruprasad KN. 2014. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. Journal of Photochemistry and Photobiology B Biology 137:55−66 doi: 10.1016/j.jphotobiol.2014.02.004
|
[11] |
Wang S, Duan L, Li J, Tian X, Li Z. 2007. UV-B radiation increases paraquat tolerance of two broad-leaved and two grass weeds in relation to changes in herbicide absorption and photosynthesis. Weed Research 47:122−8 doi: 10.1111/j.1365-3180.2007.00555.x
|
[12] |
Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, et al. 2013. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiology Biochemistry 72:35−45 doi: 10.1016/j.plaphy.2013.03.014
|
[13] |
Kostina E, Wulff A, Julkunen-Tiitto R. 2001. Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiationin the field. Trees 15:483−91 doi: 10.1007/s00468-001-0129-3
|
[14] |
Wang X, Li C, Liang D, Zou Y, Li P, et al. 2015. Phenolic compounds and antioxidant activity in red-fleshed apples. Journal of Functional Foods 18:1086−94 doi: 10.1016/j.jff.2014.06.013
|
[15] |
Wang X, Wei Z, Ma F. 2015. The effects of fruit bagging on levels of phenolic compounds and expression by anthocyanin biosynthetic and regulatory genes in red-fleshed apples. Process Biochemistry 50:1774−82 doi: 10.1016/j.procbio.2015.06.024
|
[16] |
Flint SD, Searles PS, Caldwell MM. 2004. Field testing of biological spectral weighting functions for induction of UV-absorbing compounds in higher plants. Photochemistry and Photobiology 79:399−403 doi: 10.1562/0031-8655(2004)79<399:sftobs>2.0.co;2
|
[17] |
Siipola SM, Kotilainen T, Sipari N, Morales LO, Lindfors AV, et al. 2015. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. Plant Cell and Environment 38:941−52 doi: 10.1111/pce.12403
|
[18] |
Henry-Kirk RA, McGhie TK, Andre CM, Hellens RP, Allan AC. 2012. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. Journal of Experimental Botany 63:5437−50 doi: 10.1093/jxb/ers193
|
[19] |
Xu W, Peng H, Yang T, Whitaker B, Huang L, et al. 2014. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant Physiology Biochemistry 82:289−98 doi: 10.1016/j.plaphy.2014.06.015
|
[20] |
Takos AM, Ubi BE, Robinson SP, Walker AR. 2006. Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Science 170:487−99 doi: 10.1016/j.plantsci.2005.10.001
|
[21] |
Wei Z, Li C, Gao T, Zhang Z, Liang B, et al. 2019. Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiology and Biochemistry 139:630−41 doi: 10.1016/j.plaphy.2019.04.026
|
[22] |
Li C, Wang P, Wei Z, Liang D, Liu C, et al. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research 53:298−306 doi: 10.1111/j.1600-079X.2012.00999.x
|
[23] |
Li C, Tan D, Liang D, Chang C, Jia D, et al. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany 66:669−80 doi: 10.1093/jxb/eru476
|
[24] |
Li C, Zhao Q, Gao T, Wang H, Zhang Z, et al. 2018. The mitigation effects of exogenous melatonin on replant disease in apple. Journal of Pineal Research 65:e12523 doi: 10.1111/jpi.12523
|
[25] |
Gong X, Shi S, Dou F, Song Y, Ma F. 2017. Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules 22:1542 doi: 10.3390/molecules22091542
|
[26] |
Reiter RJ. 1991. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Reviews 12:151−80 doi: 10.1210/edrv-12-2-151
|
[27] |
Murch SJ, Saxena PK. 2002. Melatonin: A potential regulator of plant growth and development? In Vitro Cellular & Developmental Biology - Plant 38:531−36 doi: 10.1079/IVP2002333
|
[28] |
Kang K, Kong K, Park S, Natsagdorj U, Kim YS, et al. 2011. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. Journal of Pineal Research 50:304−9 doi: 10.1111/j.1600-079X.2010.00841.x
|
[29] |
Tan D, Manchester LC, Terron MP, Flores LJ, Reiter RJ. 2007. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? Journal of Pineal Research 42:28−42 doi: 10.1111/j.1600-079X.2006.00407.x
|
[30] |
Huang Y, Liu S, Yuan S, Guan C, Tian D, et al. 2017. Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Scientific Reports 7:12212 doi: 10.1038/s41598-017-12566-2
|
[31] |
Janas KM, Posmyk MM. 2013. Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiologiae Plantarum 35:3285−92 doi: 10.1007/s11738-013-1372-0
|
[32] |
Wei Z, Gao T, Liang B, Zhao Q, Ma F, et al. 2018. Effects of exogenous melatonin on methyl viologen-mediated oxidative stress in apple leaf. International Journal of Molecular Sciences 19:316 doi: 10.3390/ijms19010316
|
[33] |
Park S, Lee K, Kim YS, Back K. 2012. Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. Journal of Pineal Research 52:211−16 doi: 10.1111/j.1600-079X.2011.00930.x
|
[34] |
Tan D, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ. 2016. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. Journal of Pineal Research 61:27−40 doi: 10.1111/jpi.12336
|
[35] |
Okazaki M, Higuchi K, Hanawa Y, Shiraiwa Y, Ezura H. 2009. Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. Journal of Pineal Research 46:373−82 doi: 10.1111/j.1600-079X.2009.00673.x
|
[36] |
Byeon Y, Park S, Lee HY, Kim YS, Back K. 2014. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. Journal of Pineal Research 56:275−82 doi: 10.1111/jpi.12120
|
[37] |
Wang L, Zhao Y, Reiter RJ, He C, Liu G, et al. 2014. Changes in melatonin levels in transgenic 'Micro-Tom' tomato overexpressing ovine AANAT and ovine HIOMT genes. Journal of Pineal Research 56:134−42 doi: 10.1111/jpi.12105
|
[38] |
Zhang L, Jia J, Xu Y, Wang Y, Hao J, et al. 2012. Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage. In Vitro Cellular & Developmental Biology - Plant 48:275−82 doi: 10.1007/s11627-011-9413-0
|
[39] |
Kang K, Lee K, Park S, Kim YS, Back K. 2010. Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. Journal of Pineal Research 49:176−82 doi: 10.1111/j.1600-079X.2010.00783.x
|
[40] |
Chen C, Li H, Zhang D, Li P, Ma F. 2013. The role of anthocyanin in photoprotection and its relationship with the xanthophyll cycle and the antioxidant system in apple peel depends on the light conditions. Physiologia Plantarum 149:354−66 doi: 10.1111/ppl.12043
|
[41] |
Nathália N, Heitor MD, Renato CP, Tatiana UPK, Angélica RS. 2020. Effects of UV-B radiation on secondary metabolite production, antioxidant activity, photosynthesis and herbivory interactions in Nymphoides humboldtiana (Menyanthaceae). Journal of Photochemistry and Photobiology B: Biology 212:112021 doi: 10.1016/j.jphotobiol.2020.112021
|
[42] |
Kuckenberg J, Tartachnyk I, Schmitz-Eiberger M, Noga GJ. 2007. UV-B induced damage and recovery processes in apple leaves as assessed by LIF and PAM fluorescence techniques. Journal of Applied Botany and Food Quality 81:77−85
|
[43] |
Gitz DC, Liu-Gitz L, Britz SJ, Sullivan JH. 2005. Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars. Environmental and Experimental Botany 53:343−55 doi: 10.1016/j.envexpbot.2004.04.005
|
[44] |
Fini A, Guidi L, Ferrini F, Brunetti C, Di Ferdinando M, et al. 2012. Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair? Journal of Plant Physiology 169:929−39 doi: 10.1016/j.jplph.2012.02.014
|
[45] |
Bidel LPR, Meyer S, Goulas Y, Cadot Y, Cerovic ZG. 2007. Responses of epidermal phenolic compounds to light acclimation: In vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species. Journal of Photochemistry and Photobiology B: Biology 88:163−79 doi: 10.1016/j.jphotobiol.2007.06.002
|
[46] |
Lancaster JE, Reay PF, Norris J, Butler RC. 2000. Induction of flavonoids and phenolic acids in apple by UV-B and temperature. The Journal of Horticultural Science and Biotechnology 75:142−48 doi: 10.1080/14620316.2000.11511213
|
[47] |
Gosch C, Halbwirth H, Kuhn J, Miosic S, Stich K. 2009. Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Science 176:223−31 doi: 10.1016/j.plantsci.2008.10.011
|
[48] |
Liaudanskas M, Viškelis P, Raudonis R, Kviklys D, Uselis N, et al. 2014. Phenolic composition and antioxidant activity of Malus domestica leaves. The Scientific World Journal 2014:306217 doi: 10.1155/2014/306217
|
[49] |
Dixon RA, Xie D, Sharma SB. 2005. Proanthocyanidins - a final frontier in flavonoid research? New Phytologist 165:9−28 doi: 10.1111/j.1469-8137.2004.01217.x
|
[50] |
González-Manzano S, Rivas-Gonzalo JC, Santos-Buelga C. 2004. Extraction of flavan-3-ols from grape seed and skin into wine using simulated maceration. Analytica Chimica Acta 513:283−89 doi: 10.1016/j.aca.2003.10.019
|
[51] |
Bettaieb I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B. 2011. Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiologiae Plantarum 33:1103−11 doi: 10.1007/s11738-010-0638-z
|
[52] |
Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science 12:29−36 doi: 10.1016/j.tplants.2006.11.006
|
[53] |
Oren-Shamir M. 2009. Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Science 177:310−16 doi: 10.1016/j.plantsci.2009.06.015
|
[54] |
Dai H, Li W, Han G, Yang Y, Ma Y, et al. 2013. Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Scientia Horticulturae 164:202−8 doi: 10.1016/j.scienta.2013.09.033
|
[55] |
Gao T, Liu X, Shan L, Wu Q, Liu Y, et al. 2020. Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress. Environmental and Experimental Botany 178:104159 doi: 10.1016/j.envexpbot.2020.104159
|
[56] |
Pothinuch P, Tongchitpakdee S. 2011. Melatonin contents in mulberry (Morus spp.) leaves: Effects of sample preparation, cultivar, leaf age and tea processing. Food Chemistry 128:415−19 doi: 10.1016/j.foodchem.2011.03.045
|
[57] |
Zhao Y, Tan D, Lei Q, Chen H, Wang L, et al. 2013. Melatonin and its potential biological functions in the fruits of sweet cherry. Journal of Pineal Research 55:79−88 doi: 10.1111/jpi.12044
|
[58] |
Pérez-Bueno ML, Pineda M, Díaz-Casado E, Barón M. 2015. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae. Physiologia Plantarum 153:161−74 doi: 10.1111/ppl.12237
|