[1] |
Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 19:e1700782 doi: 10.1126/sciadv.1700782
|
[2] |
Chen H, Wang Y, Sun X, Peng Y, Xiao L. 2020. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 243:125271 doi: 10.1016/j.chemosphere.2019.125271
|
[3] |
Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, et al. 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3:929−37 doi: 10.1038/s41893-020-0567-9
|
[4] |
Nizzetto L, Futter M, Langaas S. 2016. Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol. 50:10777−79 doi: 10.1021/acs.est.6b04140
|
[5] |
Huang B, Sun L, Liu M, Huang H, He H, et al. 2020. Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China. Environ. Sci. Pollut. Res. Int. 28:1675−88 doi: 10.1007/s11356-020-10527-3
|
[6] |
Rillig MC, Lehmann A. 2020. Microplastic in terrestrial ecosystems. Science 368:1430−31 doi: 10.1126/science.abb5979
|
[7] |
Zhang GS, Liu YF. 2018. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 642:12−20 doi: 10.1016/j.scitotenv.2018.06.004
|
[8] |
Qi Y, Yang X, Pelaez AM, Huerta Lwanga E, Beriot N, et al. 2018. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645:1048−56 doi: 10.1016/j.scitotenv.2018.07.229
|
[9] |
Nizzetto L, Bussi G, Futter MN, Butterfield D, Whitehead PG. 2016. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environmental Science-processes & Impacts 50:1050−59 doi: 10.1039/c6em00206d
|
[10] |
van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V. 2020. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 261:114198 doi: 10.1016/j.envpol.2020.114198
|
[11] |
de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, et al. 2019. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53:6044−52 doi: 10.1021/acs.est.9b01339
|
[12] |
Li Z, Li Q, Li R, Zhao Y, Geng J, et al. 2020. Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environ. Sci. Pollut. Res. Int. 27:30306−14 doi: 10.1007/s11356-020-09349-0
|
[13] |
Lozano YM, Aguilar-Trigueros CA, Onandia G, Maaß S, Zhao T, et al. 2021. Effects of microplastics and drought on ecosystem functions and multifunctionality. J. Appl. Ecol. 58:988−96 doi: 10.1111/1365-2664.13839
|
[14] |
Lozano YM, Lehnert T, Linck LT, Lehmann A, Rillig MC. 2021. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Front. Plant Sci. 12:616645 doi: 10.3389/fpls.2021.616645
|
[15] |
Waldman WR, Rillig MC. 2020. Microplastic research should embrace the complexity of secondary particles. Environ. Sci. Technol. 54:7751−53 doi: 10.1021/acs.est.0c02194
|
[16] |
Gao M, Liu Y, Song Z. 2019. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramose Hort). Chemosphere 237:124482 doi: 10.1016/j.chemosphere.2019.124482
|
[17] |
Rillig MC. 2020. Plastic and plants. Nature Sustainability 3:887−88 doi: 10.1038/s41893-020-0583-9
|
[18] |
Oliveri Conti G, Ferrante M, Banni M, Favara C, Nicolosi I, et al. 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 187:109677 doi: 10.1016/j.envres.2020.109677
|
[19] |
Dopico-García MS, López-Vilariñó JM, González-Rodríguez MV. 2007. Antioxidant content of and migration from commercial polyethylene, polypropylene, and polyvinyl chloride packages. J. Agric. Food Chem. 55:3225−31 doi: 10.1021/jf070102
|
[20] |
Hansen E, Nillson N, Lithner D, Lassen C. 2013. Hazardous substances in plastic materials. COWI: Danish Technological Institute. pp. 44−114 http://www.byggemiljo.no/wp-content/uploads/2014/10/72_ta3017.pdf
|
[21] |
Schrank I, Trotter B, Dummert J, Scholz-Böttcher BM, Löder MGJ, et al. 2019. Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna. Environ. Pollut. 255:113233 doi: 10.1016/j.envpol.2019.113233
|
[22] |
de Souza Machado AA, Horton AA, Davis T, Maaß S 2020. Microplastics and their effects on soil function as a life-supporting system. In Microplastics in terrestrial environments, The Handbook of Environmental Chemistry, ed. He D, Luo Y. vol 95. Switherland: Springer, Cham 95. pp. 199−222 https://doi.org/10.1007/698_2020_450
|
[23] |
de Souza Machado AA, Lau CW, Till J, Kloas W, Lehmann A, et al. 2018. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52:9656−65 doi: 10.1021/acs.est.8b02212
|
[24] |
Lehmann A, Leifheit EF, Feng L, Bergmann J, Wulf A, et al. 2020. Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi. Soil Ecol. Lett. doi: 10.1007/s42832-020-0060-4
|
[25] |
Boots B, Russell CW, Green DS. 2019. Effects of microplastics in soil ecosystems: above and below ground. Environ. Sci. Technol. 19:11496−506 doi: 10.1021/acs.est.9b03304
|
[26] |
Wang F, Zhang X, Zhang S, Zhang S, Sun Y. 2020. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791 doi: 10.1016/j.chemosphere.2020.126791
|
[27] |
Jiang X, Chen H, Liao Y, Ye Z, Li M, et al. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 250:831−38 doi: 10.1016/j.envpol.2019.04.055
|
[28] |
Taylor SE, Pearce CI, Sanguinet KA, Hu D, Chrisler WB, et al. 2020. Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots. Environ. Sci.:Nano 7:1942−53 doi: 10.1039/D0EN00309C
|
[29] |
Bolan NS, Kirkham MB, Halsband C, Nugegoda D, Ok YS. 2020. Particulate plastics in terrestrial and aquatic environments. Boca Raton: CRC Press. 466 pp. https://doi.org/10.1201/9781003053071
|
[30] |
Moghaddasi S, Hossein Khoshgoftarmanesh A, Karimzadeh F, Chaney R. 2015. Fate and effect of tire rubber ash nano-particles (RANPs) in cucumber. Ecotoxicol. Environ. Saf. 115:137−43 doi: 10.1016/j.ecoenv.2015.02.020
|
[31] |
Ng EL, Huerta-Lwanga E, Eldridge SM, Johnston P, Hu H-W, et al. 2018. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 627:1377−88 doi: 10.1016/j.scitotenv.2018.01.341
|
[32] |
Smith M. 2018. Do Microplastic Residuals in Municipal Compost Bioaccumulate in Plant Tissue? Master Thesis. Royal Roads University Victoria, British Columbia, Canada https://viurrspace.ca/handle/10613/5453
|
[33] |
Awet TT, Kohl Y, Meier F, Straskraba S, Grün AL, et al. 2018. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ. Sci. Eur. 30:11 doi: 10.1186/s12302-018-0140-6
|
[34] |
Bandopadhyay S, Sintim HY, DeBruyn JM. 2020. Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems. PeerJ 8:e9015 doi: 10.7717/peerj.9015
|
[35] |
Huang Y, Zhao Y, Wang J, Zhang M, Jia W, et al. 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 254:112983 doi: 10.1016/j.envpol.2019.112983
|
[36] |
Yu H, Fan P, Hou J, Dang Q, Cui D, et al. 2020. Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level. Environ. Pollut. 267:115544 doi: 10.1016/j.envpol.2020.115544
|
[37] |
Zhou J, Gui H, Banfield CC, Wen Y, Zang H, et al. 2021. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem 156:108211 doi: 10.1016/j.soilbio.2021.108211
|
[38] |
Dong Y, Gao M, Qiu W, Song Z. 2021. Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizosphere soil. Ecotoxicol. Environ. Saf. 211:111899 doi: 10.1016/j.ecoenv.2021.111899
|
[39] |
Liu H, Yang X, Liu G, Liang C, Xue S, et al. 2017. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 185:907−17 doi: 10.1016/j.chemosphere.2017.07.064
|
[40] |
Rabot E, Wiesmeier M, Schlüter S, Vogel HJ. 2018. Soil structure as an indicator of soil functions: A review. Geoderma 314:122−37 doi: 10.1016/j.geoderma.2017.11.009
|
[41] |
Rillig MC, Hoffmann M, Lehmann A, Liang Y, Lück M, et al. 2021. Microplastic fibers affect dynamics and intensity of CO2 and N2O fluxes from soil differently. Microplastics and Nanoplastics 1:3 doi: 10.1186/s43591-021-00004-0
|
[42] |
Ren X, Tang J, Liu X, Liu Q. 2020. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environ. Pollut. 256:113347 doi: 10.1016/j.envpol.2019.113347
|
[43] |
Zumstein MT, Schintlmeister A, Nelson TF, Baumgartner R, Woebken D, et al. 2018. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4:eaas9024 doi: 10.1126/sciadv.aas9024
|
[44] |
Liang Y, Lehmann A, Ballhausen MB, Muller L, Rillig MC. 2019. Increasing temperature and microplastic fibers jointly influence soil aggregation by saprobic fungi. Front. Microbiol. 10:2018 doi: 10.3389/fmicb.2019.02018
|
[45] |
Wan Y, Wu C, Xue Q, Hui X. 2019. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654:576−82 doi: 10.1016/j.scitotenv.2018.11.123
|
[46] |
Esan EO, Abbey L, Yurgel S. 2019. Exploring the long-term effect of plastic on compost microbiome. PLoS ONE 14:e0214376 doi: 10.1371/journal.pone.0214376
|
[47] |
Rillig MC, Lehmann A, de Souza Machado AA, Yang G. 2019. Microplastic effects on plants. New Phytol. 223:1066−70 doi: 10.1111/nph.15794
|
[48] |
Wiedner K, Polifka S. 2019. Effects of microplastic and microglass particles on soil microbial community structure in an arable soil (Chernozem). Soil Discussions Preprint doi: 10.5194/soil-2019-38
|
[49] |
Barreto C, Rillig MC, Lindo Z. 2020. Addition of polyester in soil affects litter decomposition rates but not microarthropod communities. Soil Organisms 92:109−19 doi: 10.25674/so92iss2pp109
|