[1] |
Knothe G, Steidley KR. 2019. Composition of Some Apiaceae Seed Oils Includes Phytochemicals, and Mass Spectrometry of Fatty Acid 2-Methoxyethyl Esters. European Journal of Lipid Science and Technology 121:1800386 doi: 10.1002/ejlt.201800386
|
[2] |
Serag A, Baky MH, Döll S, Farag MA. 2020. UHPLC-MS metabolome based classification of umbelliferous fruit taxa: a prospect for phyto-equivalency of its different accessions and in response to roasting. RSC Advances 10:76−85 doi: 10.1039/C9RA07841J
|
[3] |
Song X, Sun P, Yuan J, Gong K, Li N, et al. 2021. The celery genome sequence reveals sequential paleo-polyploidizations, karyotype evolution and resistance gene reduction in apiales. Plant Biotechnol J 19:731−44 doi: 10.1111/pbi.13499
|
[4] |
Wu T, Feng S, Yang Q, Bhetariya P, Gong K, et al. 2021. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum. Journal of Integrative Agriculture 20:1807−18 doi: 10.1016/S2095-3119(20)63358-5
|
[5] |
Li M, Hou X, Wang F, Tan G, Xu Z, Xiong A. 2018. Advances in the research of celery, an important Apiaceae vegetable crop. Critical Reviews in Biotechnology 38:172−83 doi: 10.1080/07388551.2017.1312275
|
[6] |
Lin L, Lu S, Harnly JM. 2007. Detection and quantification of glycosylated flavonoid malonates in celery, Chinese celery, and celery seed by LC-DAD-ESI/MS. J Agric Food Chem 55:1321−26 doi: 10.1021/jf0624796
|
[7] |
Kooti W, Daraei N. 2017. A Review of the Antioxidant Activity of Celery (Apium graveolens L). Journal of Evidence-Based Complementary & Alternative Medicine 22:1029−34 doi: 10.1177/2156587217717415
|
[8] |
Palmieri S, Pellegrini M, Ricci A, Compagnone D, Lo Sterzo C. 2020. Chemical Composition and Antioxidant Activity of Thyme, Hemp and Coriander Extracts: A Comparison Study of Maceration, Soxhlet, UAE and RSLDE Techniques. Foods 9:1221 doi: 10.3390/foods9091221
|
[9] |
Xu Z, Yang Q, Feng K, Xiong A. 2019. Changing Carrot Color: Insertions in DcMYB7 Alter the Regulation of Anthocyanin Biosynthesis and Modification. Plant Physiology 181:195−207 doi: 10.1104/pp.19.00523
|
[10] |
Song X, Nie F, Chen W, Ma X, Gong K, et al. 2020. Coriander Genomics Database: a genomic, transcriptomic, and metabolic database for coriander. Horticulture Research 7:55 doi: 10.1038/s41438-020-0261-0
|
[11] |
Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, et al. 2016. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics 48:657−66 doi: 10.1038/ng.3565
|
[12] |
Song X, Wang J, Li N, Yu J, Meng F, et al. 2020. Deciphering the high-quality genome sequence of coriander that causes controversial feelings. Plant Biotechnology Journal 18:1444−56 doi: 10.1111/pbi.13310
|
[13] |
Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386:485−88 doi: 10.1038/386485a0
|
[14] |
Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry in Antirrhinum. Nature 383:794−99 doi: 10.1038/383794a0
|
[15] |
Kosugi S, Ohashi Y. 1997. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant Cell 9:1607−19 doi: 10.1105/tpc.9.9.1607
|
[16] |
Aguilar-Martínez JA, Poza-Carrión C, Cubas P. 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. The Plant Cell 19:458−72 doi: 10.1105/tpc.106.048934
|
[17] |
Takeda T, Amano K, Ohto MA, Nakamura K, Sato S, et al. 2006. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Molecular Biology 61:165−77 doi: 10.1007/s11103-006-6265-9
|
[18] |
Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E. 2008. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. The Plant Journal 53:42−52 doi: 10.1111/j.1365-313X.2007.03308.x
|
[19] |
Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, et al. 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603−14 doi: 10.1242/dev.01595
|
[20] |
Wei B, Zhang J, Pang C, Yu H, Guo D, et al. 2015. The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Research 25:121−34 doi: 10.1038/cr.2014.145
|
[21] |
Sarvepalli K, Nath U. 2011. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. The Plant Journal 67:595−607 doi: 10.1111/j.1365-313X.2011.04616.x
|
[22] |
Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. The Plant Cell 19:473−84 doi: 10.1105/tpc.106.044792
|
[23] |
Efroni I, Blum E, Goldshmidt A, Eshed Y. 2008. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. The Plant Cell 20:2293−306 doi: 10.1105/tpc.107.057521
|
[24] |
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2010. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. The Plant Cell 22:3574−88 doi: 10.1105/tpc.110.075598
|
[25] |
Koyama T, Sato F, Ohme-Takagi M. 2010. A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis. Bioscience, Biotechnology, and Biochemistry 74:2145−7 doi: 10.1271/bbb.100442
|
[26] |
Zhou Y, Xu Z, Zhao K, Yang W, Cheng T, et al. 2016. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume. Frontiers in Plant Science 7:1301 doi: 10.3389/fpls.2016.01301
|
[27] |
Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, et al. 2008. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biology 6:e230 doi: 10.1371/journal.pbio.0060230
|
[28] |
Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, et al. 2012. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiology 159:1511−23 doi: 10.1104/pp.112.200303
|
[29] |
Giraud E, Ng S, Carrie C, Duncan O, Low J, et al. 2010. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. The Plant Cell 22:3921−34 doi: 10.1105/tpc.110.074518
|
[30] |
Ma J, Liu F, Wang Q, Wang K, Jones DC, Zhang B. 2016. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Scientific Reports 6:21535 doi: 10.1038/srep21535
|
[31] |
Nag A, King S, Jack T. 2009. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106:22534−39 doi: 10.1073/pnas.0908718106
|
[32] |
Chen D, Yan W, Fu L, Kaufmann K. 2018. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nature Communications 9:4534 doi: 10.1038/s41467-018-06772-3
|
[33] |
Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, Schommer C. 2018. Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf Development. Plant Physiology 176:1694−708 doi: 10.1104/pp.17.00823
|
[34] |
Yao X, Ma H, Wang J, Zhang D. 2007. Genome-Wide Comparative Analysis and Expression Pattern of TCP Gene Families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology 49:885−97 doi: 10.1111/j.1744-7909.2007.00509.x
|
[35] |
Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, et al. 2014. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology 14:157 doi: 10.1186/1471-2229-14-157
|
[36] |
Huo Y, Xiong W, Su K, Li Y, Yang Y, et al. 2019. Genome-Wide Analysis of the TCP Gene Family in Switchgrass (Panicum virgatum L.). International Journal of Genomics 2019:8514928 doi: 10.1155/2019/8514928
|
[37] |
Feng K, Hao J, Liu J, Huang W, Wang G, et al. 2019. Genome-wide identification, classification, and expression analysis of TCP transcription factors in carrot. Canadian Journal of Plant Science 99:525−35 doi: 10.1139/cjps-2018-0232
|
[38] |
Duan A, Wang Y, Feng K, Liu J, Xu Z, et al. 2019. TCP family genes control leaf development and its responses to gibberellin in celery. Acta Physiologiae Plantarum 41:153 doi: 10.1007/s11738-019-2945-3
|
[39] |
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications 8:14953 doi: 10.1038/ncomms14953
|
[40] |
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463−67 doi: 10.1038/nature06148
|
[41] |
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. 2012. The Pfam protein families database. Nucleic Acids Research 40:D290−D301 doi: 10.1093/nar/gkr1065
|
[42] |
Letunic I, Doerks T, Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research 40:D302−D305 doi: 10.1093/nar/gkr931
|
[43] |
Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Research 37:D205−D210 doi: 10.1093/nar/gkn845
|
[44] |
Li KB. 2003. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics 19:1585−86 doi: 10.1093/bioinformatics/btg192
|
[45] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35:1547−49 doi: 10.1093/molbev/msy096
|
[46] |
Chen K, Durand D, Farach-Colton M. 2000. NOTUNG: a program for dating gene duplications and optimizing gene family trees. Journal of Computational Biology 7:429−47 doi: 10.1089/106652700750050871
|
[47] |
Song X, Ma X, Li C, Hu J, Yang Q, et al. 2018. Comprehensive analyses of the BES1 gene family in Brassica napus and examination of their evolutionary pattern in representative species. BMC Genomics 19:346 doi: 10.1186/s12864-018-4744-4
|
[48] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
|
[49] |
Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−7 doi: 10.1093/bioinformatics/btu817
|
[50] |
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−8 doi: 10.1093/nar/gkp335
|
[51] |
Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research 13:2178−89 doi: 10.1101/gr.1224503
|
[52] |
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Research 19:1639−45 doi: 10.1101/gr.092759.109
|
[53] |
Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49 doi: 10.1093/nar/gkr1293
|
[54] |
Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics, Proteomics & Bioinformatics 8:77−80 doi: 10.1016/S1672-0229(10)60008-3
|
[55] |
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91 doi: 10.1093/molbev/msm088
|
[56] |
Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019. miRBase: from microRNA sequences to function. Nucleic Acids Research 47:D155−D162 doi: 10.1093/nar/gky1141
|
[57] |
Dai X, Zhuang Z, Zhao PX. 2018. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research 46:W49−W54 doi: 10.1093/nar/gky316
|
[58] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504 doi: 10.1101/gr.1239303
|
[59] |
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, et al. 2003. Control of leaf morphogenesis by microRNAs. Nature 425:257−63 doi: 10.1038/nature01958
|
[60] |
Koyama T, Sato F, Ohme-Takagi M. 2017. Roles of miR319 and TCP Transcription Factors in Leaf Development. Plant Physiology 175:874−85 doi: 10.1104/pp.17.00732
|
[61] |
Fang Y, Zheng Y, Lu W, Li J, Duan Y, et al. 2021. Roles of miR319-regulated TCPs in plant development and response to abiotic stress. The Crop Journal 9:17−28 doi: 10.1016/j.cj.2020.07.007
|
[62] |
Feng K, Hou X, Li M, Jiang Q, Xu Z, et al. 2018. CeleryDB: a genomic database for celery. Database 2018:bay070 doi: 10.1093/database/bay070
|
[63] |
Jia X, Li M, Jiang Q, Xu Z, Wang F, et al. 2015. High-throughput sequencing of small RNAs and anatomical characteristics associated with leaf development in celery. Scientific Reports 5:11093 doi: 10.1038/srep11093
|
[64] |
Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15:31−39 doi: 10.1016/j.tplants.2009.11.003
|
[65] |
Song X, Huang Z, Duan W, Ren J, Liu T, et al. 2014. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Molecular Genetics and Genomics 289:77−91 doi: 10.1007/s00438-013-0791-3
|
[66] |
McCarthy EW, Mohamed A, Litt A. 2015. Functional Divergence of APETALA1 and FRUITFULL is due to Changes in both Regulation and Coding Sequence. Frontiers in Plant Science 6:1076 doi: 10.3389/fpls.2015.01076
|
[67] |
Sandve SR, Rohlfs RV, Hvidsten TR. 2018. Subfunctionalization versus neofunctionalization after whole-genome duplication. Nature Genetics 50:908−9 doi: 10.1038/s41588-018-0162-4
|
[68] |
Qiao X, Li Q, Yin H, Qi K, Li L, et al. 2019. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology 20:38 doi: 10.1186/s13059-019-1650-2
|
[69] |
Panchy N, Lehti-Shiu M, Shiu SH. 2016. Evolution of Gene Duplication in Plants. Plant Physiology 171:2294−316 doi: 10.1104/pp.16.00523
|
[70] |
Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI, et al. 2018. Multiple large-scale gene and genome duplications during the evolution of hexapods. PNAS 115:4713 doi: 10.1073/pnas.1710791115
|
[71] |
Assis R, Bachtrog D. 2013. Neofunctionalization of young duplicate genes in Drosophila. PNAS 110:17409−14 doi: 10.1073/pnas.1313759110
|
[72] |
Teshima KM, Innan H. 2008. Neofunctionalization of duplicated genes under the pressure of gene conversion. Genetics 178:1385−98 doi: 10.1534/genetics.107.082933
|
[73] |
Force A, Lynch M, Pickett FB, Amores A, Yan YL, et al. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531−45 doi: 10.1093/genetics/151.4.1531
|
[74] |
Stoltzfus A. 1999. On the possibility of constructive neutral evolution. Journal of Molecular Evolution 49:169−81 doi: 10.1007/PL00006540
|
[75] |
He X, Zhang J. 2005. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169:1157−64 doi: 10.1534/genetics.104.037051
|
[76] |
Danisman S, van Dijk ADJ, Bimbo A, van der Wal F, Hennig L, et al. 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany 64:5673−85 doi: 10.1093/jxb/ert337
|
[77] |
Song X, Wang J, Sun P, Ma X, Yang Q, et al. 2020. Preferential gene retention increases the robustness of cold regulation in Brassicaceae and other plants after polyploidization. Horticulture Research 7:20 doi: 10.1038/s41438-020-0253-0
|
[78] |
Song X, Wang J, Ma X, Li Y, Lei T, et al. 2016. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus. Frontiers in Plant Science 7:1186 doi: 10.3389/fpls.2016.01186
|
[79] |
Duan W, Huang Z, Song X, Liu T, Liu H, et al. 2016. Comprehensive analysis of the polygalacturonase and pectin methylesterase genes in Brassica rapa shed light on their different evolutionary patterns. Scientific Reports 6:25107 doi: 10.1038/srep25107
|
[80] |
Huang Z, Duan W, Song X, Tang J, Wu P, et al. 2016. Retention, molecular evolution, and expression divergence of the Auxin/Indole Acetic Acid and Auxin Response Factor gene families in Brassica rapa shed light on their evolution patterns in plants. Genome Biology and Evolution 8:302−16 doi: 10.1093/gbe/evv259
|
[81] |
Zheng L, Zhou X, Guo M. 2018. Genome-wide identification and characterization of TCP family genes associated with flower and fruit development in fragaria vesca. Pakistan Journal of Botany 51:513−19 doi: 10.30848/PJB2019-2(16)
|
[82] |
Lin J, Zhu M, Cai M, Zhang W, Fatima M, et al. 2019. Identification and Expression Analysis of TCP Genes in Saccharum spontaneum L. Tropical Plant Biology 12:206−18 doi: 10.1007/s12042-019-09238-y
|