[1] |
Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C. 2013. Fruit development and ripening. Annual Review of Plant Biology 64:219−41 doi: 10.1146/annurev-arplant-050312-120057
|
[2] |
Li D, Zhang X, Li L, Aghdam MS, Wei X, et al. 2019. Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit. Food Chemistry 285:163−70 doi: 10.1016/j.foodchem.2019.01.150
|
[3] |
Chen C, Zeng Z, Liu Z, Xia R. 2018. Small RNAs, emerging regulators critical for the development of horticultural traits. Horticulture Research 5:63 doi: 10.1038/s41438-018-0072-8
|
[4] |
Ma L, Shi Y, Grierson D, Chen K. 2020. Research advance in regulation of fruit quality characteristics by microRNAs. Food Quality and Safety 4:1−8 doi: 10.1093/fqsafe/fyz039
|
[5] |
Wang W, Allan AC, Yin X. 2020. Small RNAs with a big impact on horticultural traits. Critical Reviews in Plant Sciences 39:30−43 doi: 10.1080/07352689.2020.1741923
|
[6] |
Li D, Mou W, Xia R, Li L, Zawora C, et al. 2019. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. Horticulture Research 6:26 doi: 10.1038/s41438-018-0100-8
|
[7] |
Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, et al. 2012. Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genomics 13:329 doi: 10.1186/1471-2164-13-329
|
[8] |
Liu Y, Wang L, Chen D, Wu X, Huang D, et al. 2014. Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 15:695 doi: 10.1186/1471-2164-15-695
|
[9] |
Wang Y, Li W, Chang H, Zhou J, Luo Y, et al. 2020. sRNAome and transcriptome analysis provide insight into strawberry fruit ripening. Genomics 112:2369−78 doi: 10.1016/j.ygeno.2020.01.008
|
[10] |
Ye X, Song T, Liu C, Feng H, Liu Z. 2014. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology. Hereditas 151:220−8 doi: 10.1111/hrd2.00057
|
[11] |
Zuo J, Wang Y, Zhu B, Luo Y, Wang Q, et al. 2019. Network analysis of noncoding RNAs in pepper provides insights into fruit ripening control. Scientific Reports 9:8734 doi: 10.1038/s41598-019-45427-1
|
[12] |
Silva GFFe, Silva EM, da Silva Azevedo M, Guivin MAC, Ramiro DA, et al. 2014. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. The Plant Journal 78:604−18 doi: 10.1111/tpj.12493
|
[13] |
Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV. 2019. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. Journal of Experimental Botany 70:4775−92 doi: 10.1093/jxb/erz264
|
[14] |
Wang Y, Zhang J, Cui W, Guan C, Mao W, et al. 2017. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry 65:7361−70 doi: 10.1021/acs.jafc.7b01687
|
[15] |
Xue C, Yao J, Qin M, Zhang M, Allan AC, et al. 2019. PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnology Journal 17:103−17 doi: 10.1111/pbi.12950
|
[16] |
Yao J, Xu J, Cornille A, Tomes S, Karunairetnam S, et al. 2015. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. The Plant Journal 84:417−27 doi: 10.1111/tpj.13021
|
[17] |
Wang W, Wang J, Wu Y, Li D, Allan AC, et al. 2020. Genome-wide analysis of coding and non-coding RNA reveals a conserved miR164-NAC regulatory pathway for fruit ripening. New Phytologist 225:1618−34 doi: 10.1111/nph.16233
|
[18] |
Chen C, Li J, Feng J, Liu B, Feng L, et al. 2021. sRNAanno − a database repository of uniformly annotated small RNAs in plants. Horticulture Research 8:45 doi: 10.1038/s41438-021-00480-8
|
[19] |
Yue J, Lu X, Zhang H, Ge J, Gao X, et al. 2017. Identification of conserved and novel microRNAs in blueberry. Frontiers in Plant Science 8:1155 doi: 10.3389/fpls.2017.01155
|
[20] |
Ma W, Chen C, Liu Y, Zeng M, Meyers BC, et al. 2018. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. New Phytologist 217:1535−50 doi: 10.1111/nph.14934
|
[21] |
Xu Y, Liu Z, Lou L, Su X. 2018. Identification of browning-related microRNAs and their targets reveals complex miRNA-mediated browning regulatory networks in Luffa cylindrica. Scientific Reports 8:16242 doi: 10.1038/s41598-018-33896-9
|
[22] |
Zhu Q, Xu Y, Yang Y, Guan C, Zhang Q, et al. 2019. The persimmon (Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution. Horticulture Research 6:138 doi: 10.1038/s41438-019-0227-2
|
[23] |
Chen C, Xie F, Hua Q, Zur NT, Zhang L, et al. 2020. Integrated sRNAome and RNA-seq analysis reveals miRNA effects on betalain biosynthesis in pitaya. BMC Plant Biology 20:437 doi: 10.1186/s12870-020-02622-x
|
[24] |
Paul S, de la Fuente-Jiménez JL, Manriquez CG, Sharma A. 2020. Identifcation, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs. 3 Biotech 10:25 doi: 10.1007/s13205-019-2000-5
|
[25] |
Zhu H, Chen C, Zeng J, Yun Z, Liu Y, et al. 2020. MicroRNA528, a hub regulator modulating ROS homeostasis via targeting of a diverse set of genes encoding copper-containing proteins in monocots. New Phytologist 225:385−99 doi: 10.1111/nph.16130
|
[26] |
Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. 2012. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. Plant Molecular Biology 78:561−76 doi: 10.1007/s11103-012-9883-4
|
[27] |
Huang W, Peng S, Xian Z, Lin D, Hu G, et al. 2017. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnology Journal 15:472−88 doi: 10.1111/pbi.12646
|
[28] |
Liang Y, Guan Y, Wang S, Li Y, Zhang Z, et al. 2018. Identification and characterization of known and novel microRNAs in strawberry fruits induced by Botrytis cinerea. Scientific Reports 8:10921 doi: 10.1038/s41598-018-29289-7
|
[29] |
Roeder AHK, Yanofsky MF. 2006. Fruit development in Arabidopsis. The Arabidopsis Book 4:e0075 doi: 10.1199/tab.0075
|
[30] |
José Ripoll J, Bailey LJ, Mai QA, Wu SL, Hon CT, et al. 2015. microRNA regulation of fruit growth. Nature Plants 1:15036 doi: 10.1038/nplants.2015.36
|
[31] |
Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, et al. 2011. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. The Plant Journal 67:232−46 doi: 10.1111/j.1365-313X.2011.04586.x
|
[32] |
Zhang X, Zou Z, Zhang J, Zhang Y, Han Q, et al. 2011. Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Letters 585:435−39 doi: 10.1016/j.febslet.2010.12.036
|
[33] |
Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, et al. 2013. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. Journal of Experimental Botany 64:1863−78 doi: 10.1093/jxb/ert049
|
[34] |
da Silva EM, Silva GFFe, Bidoia DB, da Silva Azevedo M, de Jesus FA, et al. 2017. microRNA159-targeted SlGAMYB transcription factors are required for fruit set in tomato. The Plant Journal 92:95−109 doi: 10.1111/tpj.13637
|
[35] |
Luo X, Cao D, Zhang J, Chen L, Xia X, et al. 2018. Integrated microRNA and mRNA expression profiling reveals a complex network regulating pomegranate (Punica granatum L.) seed hardness. Scientific Reports 8:9292 doi: 10.1038/s41598-018-27664-y
|
[36] |
Ren G, Wang B, Zhu X, Mu Q, Wang C, et al. 2014. Cloning, expression, and characterization of miR058 and its target PPO during the development of grapevine berry stone. Gene 548:166−73 doi: 10.1016/j.gene.2014.07.021
|
[37] |
Wang C, Jogaiah S, Zhang W, Abdelrahman M, Fang J. 2018. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy. Journal of Experimental Botany 69:3639−50 doi: 10.1093/jxb/ery172
|
[38] |
Zhang W, Abdelrahman M, Jiu S, Guan L, Han J, et al. 2019. VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biology 19:111 doi: 10.1186/s12870-019-1719-9
|
[39] |
Yao J, Tomes S, Xu J, Gleave AP. 2016. How microRNA172 affects fruit growth in different species is dependent on fruit type. Plant Signaling & Behavior 11:e1156833 doi: 10.1080/15592324.2016.1156833
|
[40] |
Xu J, Li J, Cui L, Zhang T, Wu Z, et al. 2017. New insights into the roles of cucumber TIR1 homologs and miR393 in regulating fruit/seed set development and leaf morphogenesis. BMC Plant Biology 17:130 doi: 10.1186/s12870-017-1075-6
|
[41] |
Li D, Li L, Luo Z, Mou W, Mao L, et al. 2015. Comparative transcriptome analysis reveals the influence of abscisic acid on the metabolism of pigments, ascorbic acid and folic acid during strawberry fruit ripening. PloS ONE 10:e0130037 doi: 10.1371/journal.pone.0130037
|
[42] |
Chung MY, Nath UK, Vrebalov J, Gapper N, Lee JM, et al. 2020. Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor. BMC Plant Biology 20:283 doi: 10.1186/s12870-020-02489-y
|
[43] |
Gao C, Ju Z, Cao D, Zhai B, Qin G, et al. 2015. MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation. Plant Biotechnology Journal 13:370−82 doi: 10.1111/pbi.12297
|
[44] |
Wang Y, Zou W, Xiao Y, Cheng L, Liu Y, et al. 2018. MicroRNA1917 targets CTR4 splice variants to regulate ethylene responses in tomato. Journal of Experimental Botany 69:1011−25 doi: 10.1093/jxb/erx469
|
[45] |
Chen W, Kong J, Lai T, Manning K, Wu C, et al. 2015. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening. Scientific Reports 5:7852 doi: 10.1038/srep07852
|
[46] |
Li D, Mou W, Luo Z, Li L, Limwachiranon J, et al. 2016. Developmental and stress regulation on expression of a novel miRNA, Fan-miR73, and its target ABI5 in strawberry. Scientific Reports 6:28385 doi: 10.1038/srep28385
|
[47] |
Li J, Lai T, Song H, Xu X. 2017. MiR164 is involved in delaying senescence of strawberry (Fragaria ananassa) fruit by negatively regulating NAC transcription factor genes under low temperature. Russian Journal of Plant Physiology 64:251−59 doi: 10.1134/S102144371702008X
|
[48] |
Xu Y, Charles MT, Luo Z, Mimee B, Tong Z, et al. 2018. Preharvest ultraviolet C treatment affected senescence of stored strawberry fruit with a potential role of microRNAs in the activation of the antioxidant system. Journal of Agricultural and Food Chemistry 66:12188−97 doi: 10.1021/acs.jafc.8b04074
|
[49] |
Bi F, Meng X, Ma C, Yi G. 2015. Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics 16:776 doi: 10.1186/s12864-015-1995-1
|
[50] |
Dan M, Huang M, Liao F, Qin R, Liang X, et al. 2018. Identification of ethylene responsive miRNAs and their targets from newly harvested banana fruits using high-throughput sequencing. Journal of Agricultural and Food Chemistry 66:10628−39 doi: 10.1021/acs.jafc.8b01844
|
[51] |
Guo D, Li Q, Lv W, Zhang G, Yu Y. 2018. MicroRNA profiling analysis of developing berries for 'Kyoho' and its early-ripening mutant during berry ripening. BMC Plant Biology 18:285 doi: 10.1186/s12870-018-1516-x
|
[52] |
Xue M, Yi H, Wang H. 2018. Identification of miRNAs involved in SO2 preservation in Vitis vinifera L. by deep sequencing. Environmental and Experimental Botany 153:218−28 doi: 10.1016/j.envexpbot.2018.05.021
|
[53] |
Kim JY, Kim SK, Jung J, Jeong MJ, Ryu CM. 2018. Exploring the sound-modulated delay in tomato ripening through expression analysis of coding and non-coding RNAs. Annals of Botany 122:1231−44 doi: 10.1093/aob/mcy134
|
[54] |
Wang Y, Li W, Chang H, Zhou J, Luo Y, et al. 2019. Sweet cherry fruit miRNAs and effect of high CO2 on the profile associated with ripening. Planta 249:1799−810 doi: 10.1007/s00425-019-03110-9
|
[55] |
Xu X, Yin L, Ying Q, Song H, Xue D, et al. 2013. High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa. PloS ONE 8:e70959 doi: 10.1371/journal.pone.0070959
|
[56] |
Tang R, Zhou Y, Chen Z, Zeng J, Huang H, et al. 2020. Involvement of miRNA-mediated anthocyanin and energy metabolism in the storability of litchi fruit. Postharvest Biology and Technology 165:111200 doi: 10.1016/j.postharvbio.2020.111200
|
[57] |
Yao F, Zhu H, Yi C, Qu H, Jiang Y. 2015. MicroRNAs and targets in senescent litchi fruit during ambient storage and post-cold storage shelf life. BMC Plant Biology 15:181 doi: 10.1186/s12870-015-0509-2
|
[58] |
Chen C, Liu C, Jiang A, Zhao Q, Zhang Y, et al. 2020. miRNA and degradome sequencing identify miRNAs and their target genes involved in the browning inhibition of fresh-cut apples by hydrogen sulfide. Journal of Agricultural and Food Chemistry 68:8462−70 doi: 10.1021/acs.jafc.0c02473
|
[59] |
Cao D, Wang J, Ju Z, Liu Q, Li S, et al. 2016. Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Plant Science 247:1−12 doi: 10.1016/j.plantsci.2016.02.012
|
[60] |
Yang T, Wang Y, Liu H, Zhang W, Chai M, et al. 2020. MicroRNA1917-CTR1-LIKE PROTEIN KINASE 4 impacts fruit development via tuning ethylene synthesis and response. Plant Science 291:110334 doi: 10.1016/j.plantsci.2019.110334
|
[61] |
Xian Z, Huang W, Yang Y, Tang N, Zhang C, et al. 2014. miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato. Journal of Experimental Botany 65:6655−66 doi: 10.1093/jxb/eru387
|
[62] |
Sun Y, Luo W, Chang H, Li Z, Zhou J, et al. 2019. Identification of miRNAs and their target genes involved in cucumber fruit expansion using small RNA and degradome sequencing. Biomolecules 9:483 doi: 10.3390/biom9090483
|
[63] |
Hu G, Fan J, Xian Z, Huang W, Lin D, et al. 2014. Overexpression of SlREV alters the development of the flower pedicel abscission zone and fruit formation in tomato. Plant Science 229:86−95 doi: 10.1016/j.plantsci.2014.08.010
|
[64] |
Damodharan S, Zhao D, Arazi T. 2016. A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. The Plant Journal 86:458−71 doi: 10.1111/tpj.13127
|
[65] |
Xanthopoulou A, Tsaballa A, Ganopoulos I, Kapazoglou A, Avramidou E, et al. 2019. Ιntra-species grafting induces epigenetic and metabolic changes accompanied by alterations in fruit size and shape of Cucurbita pepo L. Plant Growth Regulation 87:93−108 doi: 10.1007/s10725-018-0456-7
|
[66] |
Ramsay NA, Glover BJ. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science 10:63−70 doi: 10.1016/j.tplants.2004.12.011
|
[67] |
Sunitha S, Loyola R, Alcalde JA, Arce-Johnson P, Matus JT, Rock CD. 2019. The role of UV-B light on small RNA activity during grapevine berry development. G3 Genes|Genomes|Genetics 9:769−87 doi: 10.1534/g3.118.200805
|
[68] |
Zhu H, Xia R, Zhao B, An Y, Dardick CD, et al. 2012. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biology 12:149 doi: 10.1186/1471-2229-12-149
|
[69] |
Xia R, Zhu H, An Y, Beers EP, Liu Z. 2012. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology 13:R47 doi: 10.1186/gb-2012-13-6-r47
|
[70] |
Liu R, Lai B, Hu B, Qin Y, Hu G, et al. 2017. Identification of microRNAs and their target genes related to the accumulation of anthocyanins in Litchi chinensis by high-throughput sequencing and degradome analysis. Frontiers in Plant Science 7:2059 doi: 10.3389/fpls.2016.02059
|
[71] |
Jia X, Shen J, Liu H, Li F, Ding N, et al. 2015. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242:283−93 doi: 10.1007/s00425-015-2305-5
|
[72] |
Chen Q, Deng B, Gao J, Zhao Z, Chen Z, et al. 2019. Comparative analysis of miRNA abundance revealed the function of vvi-miR828 in fruit coloring in root restriction cultivation grapevine (Vitis vinifera L.). International Journal of Molecular Sciences 20:4058 doi: 10.3390/ijms20164058
|
[73] |
Li Y, Cui W, Qi X, Lin M, Qiao C, et al. 2020. MicroRNA858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit (Actinidia arguta). Plant Science 296:110476 doi: 10.1016/j.plantsci.2020.110476
|
[74] |
Gou J, Felippes FF, Liu C, Weigel D, Wang J. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell 23:1512−22 doi: 10.1105/tpc.111.084525
|
[75] |
Li X, Hou Y, Xie X, Li H, Li X, et al. 2020. A blueberry MIR156a-SPL12 module coordinates the accumulation of chlorophylls and anthocyanins during fruit ripening. Journal of Experimental Botany 71:5976−89 doi: 10.1093/jxb/eraa327
|
[76] |
Qian M, Ni J, Niu Q, Bai S, Bao L, et al. 2017. Response of miR156-SPL module during the red peel coloration of bagging-treated Chinese sand pear (Pyrus pyrifolia Nakai). Frontiers in Physiology 8:550 doi: 10.3389/fphys.2017.00550
|
[77] |
Yang T, Ma H, Zhang J, Wu T, Song T, et al. 2019. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. The Plant Journal 100:572−90 doi: 10.1111/tpj.14470
|
[78] |
Qu D, Yan F, Meng R, Jiang X, Yang H, et al. 2016. Identification of microRNAs and their targets associated with fruit-bagging and subsequent sunlight re-exposure in the "Granny Smith" apple exocarp using high-throughput sequencing. Frontiers in Plant Science 7:27 doi: 10.3389/fpls.2016.00027
|
[79] |
Xu Q, Liu Y, Zhu A, Wu X, Ye J, et al. 2010. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics 11:246 doi: 10.1186/1471-2164-11-246
|
[80] |
Koul A, Yogindran S, Sharma D, Kaul S, Rajam MV, et al. 2016. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato. Plant Physiology and Biochemistry 108:412−21 doi: 10.1016/j.plaphy.2016.08.001
|
[81] |
Heng W, Jia B, Huang H, Yang J, Wang Z, et al. 2016. Identification of russet-associated microRNAs in the exocarp of a Dangshansuli pear mutant (Pyrus bretschneideri Rehd.) by high-throughput sequencing. Tree Genetics & Genomes 12:107 doi: 10.1007/s11295-016-1058-z
|
[82] |
Shi F, Zhou X, Yao M, Tan Z, Zhou Q, et al. 2019. miRNAs play important roles in aroma weakening during the shelf life of 'Nanguo' pear after cold storage. Food Research International 116:942−52 doi: 10.1016/j.foodres.2018.09.031
|
[83] |
Liu X, Luo X, Luo K, Liu Y, Pan T, et al. 2019. Small RNA sequencing reveals dynamic microRNA expression of important nutrient metabolism during development of Camellia oleifera fruit. International Journal of Biological Sciences 15:416−29 doi: 10.7150/ijbs.26884
|
[84] |
Din M, Barozai MYK. 2014. Profiling microRNAs and their targets in an important fleshy fruit: tomato (Solanum lycopersicum). Gene 535:198−203 doi: 10.1016/j.gene.2013.11.034
|
[85] |
Yu Z, Wang L, Zhao B, Shan C, Zhang Y, et al. 2015. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant 8:98−110 doi: 10.1016/j.molp.2014.11.002
|
[86] |
Cao F, Guan C, Dai H, Li X, Zhang Z. 2015. Soluble solids content is positively correlated with phosphorus content in ripening strawberry fruits. Scientia Horticulturae 195:183−7 doi: 10.1016/j.scienta.2015.09.018
|
[87] |
Wu J, Wang D, Liu Y, Wang L, Qiao X, et al. 2014. Identification of miRNAs involved in pear fruit development and quality. BMC Genomics 15:953 doi: 10.1186/1471-2164-15-953
|
[88] |
Chang W, Li Z, Hu C, Fan J, Wang J, et al. 2014. Effect of over-expression miR319 on fruit quality of tomato. Journal of Anhui Agricultural Sciences 42:6150−51+54 doi: 10.13989/j.cnki.0517-6611.2014.19.009
|
[89] |
Zeng S, Liu Y, Pan L, Hayward A, Wang Y. 2015. Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high-throughput sequencing. Frontiers in Plant Science 6:778 doi: 10.3389/fpls.2015.00778
|
[90] |
Wang C, Han J, Liu C, Kibet KN, Kayesh E, et al. 2012. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 13:122 doi: 10.1186/1471-2164-13-122
|
[91] |
Li S, Shao Z, Fu X, Xiao W, Li L, et al. 2017. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing. BMC Genomics 18:938 doi: 10.1186/s12864-017-4347-5
|
[92] |
Zuo J, Zhu B, Fu D, Zhu Y, Ma Y, et al. 2012. Sculpting the maturation, softening and ethylene pathway: the influences of microRNAs on tomato fruits. BMC Genomics 13:7 doi: 10.1186/1471-2164-13-7
|
[93] |
Zhang J, Wang M, Cheng F, Dai C, Sun Y, et al. 2016. Identification of microRNAs correlated with citrus granulation based on bioinformatics and molecular biology analysis. Postharvest Biology and Technology 118:59−67 doi: 10.1016/j.postharvbio.2016.03.010
|
[94] |
Pan L. 2016. Molecular mechanism of stony hard flesh and screening of ripening related microRNAs in peaches. Thesis, Huazhong Agricultural University, Wuhan, China.
|
[95] |
Luo Y, Zhang X, Luo Z, Zhang Q, Liu J. 2015. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biology 15:11 doi: 10.1186/s12870-014-0400-6
|
[96] |
Janick J. 2005. Horticultural plant breeding: past accomplishments, future directions. Acta Horticulturae 694:61−65 doi: 10.17660/actahortic.2005.694.6
|
[97] |
Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A. 2017. Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Frontiers in Plant Science 8:374 doi: 10.3389/fpls.2017.00374
|
[98] |
Cavalieri D, Rizzetto L, Tocci N, Rivero D, Asquini E, et al. 2016. Plant microRNAs as novel immunomodulatory agents. Scientific Reports 6:25761 doi: 10.1038/srep25761
|
[99] |
Martinez B, Peplow PV. 2020. MicroRNAs as disease progression biomarkers and therapeutic targets in experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regeneration Research 15:1831−37 doi: 10.4103/1673-5374.280307
|
[100] |
Li J, Lei L, Ye F, Zhou Y, Chang H, et al. 2019. Nutritive implications of dietary microRNAs: facts, controversies, and perspectives. Food & Function 10:3044−56 doi: 10.1039/c9fo00216b
|
[101] |
Zhu H, Zhang Y, Tang R, Qu H, Duan X, et al. 2019. Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. BMC Genomics 20:33 doi: 10.1186/s12864-018-5395-1
|
[102] |
Zhang J, Dai C, Li M, Sun Y, Wang F, Fan B. 2017. Effects of high temperature stress on fruit quality and response of related miRNA during the storage period. Journal of Chinese Institute of Food Science and Technology 17:131−37 doi: 10.16429/j.1009-7848.2017.06.018
|
[103] |
McLoughlin AG, Wytinck N, Walker PL, Girard IJ, Rashid KY, et al. 2018. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports 8:7320 doi: 10.1038/s41598-018-25434-4
|