[1] Takayama S, Isogai A. 2005. Self-incompatibility in plants. Annual Review of Plant Biology 56:467−89 doi: 10.1146/annurev.arplant.56.032604.144249
[2] Iwano M, Takayama S. 2012. Self/non-self discrimination in angiosperm self-incompatibility. Current Opinion in Plant Biology 15:78−83 doi: 10.1016/j.pbi.2011.09.003
[3] Yamamoto M, Tantikanjana T, Nishio T, Nasrallah ME, Nasrallah JB. 2014. Site-specific N-glycosylation of the S-locus receptor kinase and its role in the self-incompatibility response of the Brassicaceae. The Plant Cell 26:4749−62 doi: 10.1105/tpc.114.131987
[4] Sun P, Li S, Lu D, Williams JS, Kao TH. 2015. Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation. The Plant Journal 83:213−23 doi: 10.1111/tpj.12880
[5] Hee-Jeong J, Uddin AN, Jong-In P, Kumar TS, Hye-Ran K, et al. 2014. Analysis of S-locus and expression of S-alleles of self-compatible rapid-cycling Brassica oleracea 'TO1000DH3'. Molecular Biology Reports 41:6441−48 doi: 10.1007/s11033-014-3526-6
[6] Kitashiba H, Nasrallah JB. 2014. Self-incompatibility in Brassicaceae crops: lessons for interspecific incompatibility. Breeding Science 64:23−37 doi: 10.1270/jsbbs.64.23
[7] Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, et al. 2006. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805−10 doi: 10.1038/nature04491
[8] Williams JS, Wu L, Li S, Sun P, Kao TH. 2015. Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Frontiers in Plant Science 6:41 doi: 10.3389/fpls.2015.00041
[9] Wang C, Xu G, Jiang XT, Chen G, Wu J, et al. 2009. S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. The Plant Journal 57:220−29 doi: 10.1111/j.1365-313X.2008.03681.x
[10] Wu J, Qu H, Shang Z, Tao S, Xu G, et al. 2011. Reciprocal regulation of Ca2+-activated outward K+ channels of Pyrus pyrifolia pollen by heme and carbon monoxide. New Phytologist 189:1060−68 doi: 10.1111/j.1469-8137.2010.03564.x
[11] Qiao H, Wang F, Zhao L, Zhou J, Lai Z, et al. 2004. The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. The Plant Cell 16:2307−22 doi: 10.1105/tpc.104.024919
[12] Yang Q, Zhang D, Li Q, Cheng Z, Xue Y. 2007. Heterochromatic and genetic features are consistent with recombination suppression of the self-incompatibility locus in Antirrhinum. The Plant Journal 51:140−51 doi: 10.1111/j.1365-313X.2007.03127.x
[13] Thomas SG, Franklin-Tong VE. 2004. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305−9 doi: 10.1038/nature02540
[14] Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, et al. 2009. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992−95 doi: 10.1038/nature08027
[15] Tarutani Y, Shiba H, Iwano M, Kakizaki T, Suzuki G, et al. 2010. Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature 466:983−86 doi: 10.1038/nature09308
[16] Tsuchimatsu T, Suwabe K, Shimizu-Inatsugi R, Isokawa S, Pavlidis P, et al. 2010. Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature 464:1342−46 doi: 10.1038/nature08927
[17] Kusaba M, Nishio T, Satta Y, Hinata K, Ockendon D. 1997. Striking sequence similarity in inter- and intra-specific comparisons of class I SLG alleles from Brassica oleracea and Brassica campestris: implications for the evolution and recognition mechanism. PNAS 94:7673−78 doi: 10.1073/pnas.94.14.7673
[18] Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB. 2007. Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. PNAS 104:12211−16 doi: 10.1073/pnas.0705186104
[19] Cabrillac D, Cock JM, Dumas C, Gaude T. 2001. The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature 410:220−3 doi: 10.1038/35065626
[20] Ivanov R, Gaude T. 2009. Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. Plant Cell 21:2107−17 doi: 10.1105/tpc.108.063479
[21] Kemp BP, Doughty J. 2007. S cysteine-rich (SCR) binding domain analysis of the Brassica self-incompatibility S-locus receptor kinase. New Phytologist 175:619−29 doi: 10.1111/j.1469-8137.2007.02126.x
[22] Miege C, Ruffio-Châble V, Schierup MH, Cabrillac D, Dumas C, et al. 2001. Intrahaplotype polymorphism at the Brassica S locus. Genetics 159:811−22 doi: 10.1093/genetics/159.2.811
[23] Boggs NA, Dwyer KG, Nasrallah ME, Nasrallah JB. 2009. In vivo detection of residues required for ligand-selective activation of the S-locus receptor in Arabidopsis. Current Biology 19:786−91 doi: 10.1016/j.cub.2009.03.037
[24] Germain H, Houde J, Gray-Mitsumune M, Sawasaki T, Endo Y, et al. 2007. Characterization of ScORK28, a transmembrane functional protein receptor kinase predominantly expressed in ovaries from the wild potato species Solanum chacoense. FEBS Letters 581:5137−42 doi: 10.1016/j.febslet.2007.10.001
[25] Goring DR, Rothstein SJ. 1992. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. The Plant Cell 4:1273−81 doi: 10.1105/tpc.4.10.1273
[26] Giranton JL, Dumas C, Cock JM, Gaude T. 2000. The integral membrane S-locus receptor kinase of Brassica has serine/threonine kinase activity in a membranous environment and spontaneously forms oligomers in planta. Proceedings of the National Academy of Sciences of the United States of America 97:3759−64 doi: 10.1073/pnas.97.7.3759
[27] Stein JC, Dixit R, Nasrallah ME, Nasrallah JB. 1996. SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. The Plant Cell 8:429−45 doi: 10.1105/tpc.8.3.429
[28] Schopfer CR, Nasrallah ME, Nasrallah JB. 1999. The male determinant of self-incompatibility in Brassica. Science 286:1697−700 doi: 10.1126/science.286.5445.1697
[29] Suzuki G, Kai N, Hirose T, Fukui K, Nishio T, et al. 1999. Genomic organization of the S locus: identification and characterization of genes in SLG/SRK region of S 9 haplotype of Brassica campestris (syn. rapa). Genetics 153:391−400 doi: 10.1093/genetics/153.1.391
[30] Stephenson AG, Doughty J, Dixon S, Elleman C, Hiscock S, et al. 1997. The male determinant of self-incompatibility in Brassica oleracea is located in the pollen coating. The Plant Journal 12:1351−59 doi: 10.1046/j.1365-313x.1997.12061351.x
[31] Kachroo A, Schopfer CR, Nasrallah ME, Nasrallah JB. 2001. Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293:1824−26 doi: 10.1126/science.1062509
[32] Shiba H, Takayama S, Iwano M, Shimosato H, Funato M, et al. 2001. A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiology 125:2095−103 doi: 10.1104/pp.125.4.2095
[33] Tabah DA, Mcinnis SM, Hiscock SJ. 2004. Members of the S-receptor kinase multigene family in Senecio squalidus L. (Asteraceae), a species with sporophytic self-incompatibility. Sexual Plant Reproduction 17:131−40
[34] Quiapim AC, Brito MS, Bernardes LAS, DaSilva I, Malavazi I, et al. 2009. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiology 149:1211−30 doi: 10.1104/pp.108.131573
[35] Allen AM, Lexer C, Hiscock SJ. 2010. Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas. Plant Physiology 154:1347−60 doi: 10.1104/pp.110.162172
[36] Iaria D, Chiappetta A, Muzzalupo I. 2016. De novo transcriptome sequencing of Olea europaea L. to identify genes involved in the development of the pollen tube. The Scientific World Journal 2016:4305252 doi: 10.1155/2016/4305252
[37] Li Z, Zhang P, Lv J, Cheng Y, Cui J, et al. 2016. Global dynamic transcriptome programming of rapeseed (Brassica napus L.) anther at different development stages. PLoS One 11:e0154039 doi: 10.1371/journal.pone.0154039
[38] Yang H, et al. 2011. Study on the interactions between the truncated fragments of SCR and eSRK from Brassica oleracea L. by a yeast two-hybrid system. Scientia Agricultura Sinica 44:1953−62
[39] Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, et al. 2007. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. The Plant Cell 19:107−17 doi: 10.1105/tpc.105.038869
[40] Wang F, Zhang F, Chen F, Fang W, Teng N. 2014. Identification of chrysanthemum (Chrysanthemum morifolium) self-incompatibility. The Scientific World Journal 2014:625658 doi: 10.1155/2014/625658
[41] Wang F, Zhong X, Huang L, Fang W, Chen F, et al. 2018. Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher. Plant Molecular Biology 98:233−47 doi: 10.1007/s11103-018-0777-y
[42] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883
[43] Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651−52 doi: 10.1093/bioinformatics/btg034
[44] Hou X, Guo Q, Wei W, Guo L, Guo D, et al. 2018. Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR. Molecules 23:689 doi: 10.3390/molecules23030689
[45] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics 25:25−9 doi: 10.1038/75556
[46] Ye J, Fang L, Zheng H, Zhang Y, Chen J, et al. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research 34:W293−W297 doi: 10.1093/nar/gkl031
[47] Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5:621−8 doi: 10.1038/nmeth.1226
[48] Audic S, Claverie JM. 1997. The significance of digital gene expression profiles. Genome Research 7:986−95 doi: 10.1101/gr.7.10.986
[49] Wang F, Zhong X, Wang H, Song A, Chen F, et al. 2018. Investigation of differences in fertility among progenies from self-pollinated chrysanthemum. International Journal of Molecular Sciences 19:832 doi: 10.3390/ijms19030832
[50] Earley KW, Haag JR, Pontes O, Opper K, Juehne T, et al. 2006. Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal 45:616−29 doi: 10.1111/j.1365-313X.2005.02617.x
[51] Guan Y, Ding L, Jiang J, Shentu Y, Zhao W, et al. 2021. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. Horticulture Research 8:87 doi: 10.1038/s41438-021-00525-y
[52] Wang J, Guan Y, Ding L, Li P, Zhao W, et al. 2019. The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science 280:248−57 doi: 10.1016/j.plantsci.2018.12.008
[53] Haffani YZ, Gaude T, Cock JM, Goring DR. 2004. Antisense suppression of thioredoxin h mRNA in Brassica napus cv. Westar pistils causes a low level constitutive pollen rejection response. Plant Molecular Biology 55:619−30 doi: 10.1007/s11103-004-1126-x
[54] Gerola PD, Mol CA, Newbigin E, Lush WM. 2000. Regulation of LAT52 promoter activity during pollen tube growth through the pistil of Nicotiana alata. Sexual Plant Reproduction 12:347−52 doi: 10.1007/s004970000022