[1] |
Turner SR, Somerville CR. 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. The Plant Cell 9:689−701 doi: 10.1105/tpc.9.5.689
|
[2] |
Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, et al. 2012. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. The Plant Cell 24:3506−29 doi: 10.1105/tpc.112.102574
|
[3] |
Hussey SG, Mizrachi E, Creux NM, Myburg AA. 2013. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. Frontiers in Plant Science 4:325 doi: 10.3389/fpls.2013.00325
|
[4] |
Kumar M, Campbell L, Turner S. 2015. Secondary cell walls: biosynthesis and manipulation. Journal of Experimental Botany 67:515−31 doi: 10.1093/jxb/erv533
|
[5] |
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. 1997. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell 9:841−57 doi: 10.1105/tpc.9.6.841
|
[6] |
Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, et al. 2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development 19:1855−60 doi: 10.1101/gad.1331305
|
[7] |
Zhong R, Demura T, Ye Z. 2006. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell 18:3158−70 doi: 10.1105/tpc.106.047399
|
[8] |
Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, et al. 2007. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell 19:270−80 doi: 10.1105/tpc.106.047043
|
[9] |
Yamaguchi M, Kubo M, Fukuda H, Demura T. 2008. VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. The Plant Journal 55:652−64 doi: 10.1111/j.1365-313X.2008.03533.x
|
[10] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81 doi: 10.1016/j.tplants.2010.06.005
|
[11] |
Kim JH, Hyun WY, Nguyen HN, Jeong CY, Xiong L, et al. 2015. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5. Plant, Cell & Environment 38:559−71 doi: 10.1111/pce.12415
|
[12] |
Ko JH, Kim WC, Han KH. 2009. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. The Plant Journal 60:649−65 doi: 10.1111/j.1365-313X.2009.03989.x
|
[13] |
McCarthy RL, Zhong R, Ye Z. 2009. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant and Cell Physiology 50:1950−64 doi: 10.1093/pcp/pcp139
|
[14] |
Noda S, Koshiba T, Hattori T, Yamaguchi M, Suzuki S, et al. 2015. The expression of a rice secondary wallspecific cellulose synthase gene, OsCesA7, is directly regulated by a rice transcription factor, OsMYB58/63. Planta 242:589−600 doi: 10.1007/s00425-015-2343-z
|
[15] |
Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. 2008. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell 20:2763−82 doi: 10.1105/tpc.108.061325
|
[16] |
Öhman D, Demedts B, Kumar M, Gerber L, Gorzsás A, et al. 2013. MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems. The Plant Journal 73:63−76 doi: 10.1111/tpj.12018
|
[17] |
Geng D, Chen P, Shen X, Zhang Y, Li X, et al. 2018. MdMYB88 and MdMYB124 enhance drought tolerance by modulating root vessels and cell walls in apple. Plant Physiology 178:1296−309 doi: 10.1104/pp.18.00502
|
[18] |
Chen K, Song M, Guo Y, Liu L, Xue H, et al. 2019. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress responsive signals. Plant Biotechnology Journal 17:2341−55 doi: 10.1111/pbi.13151
|
[19] |
Chen K, Guo Y, Song M, Liu L, Xue H, et al. 2020. Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. Horticulture Research 7:204 doi: 10.1038/s41438-020-00433-7
|
[20] |
Li S, Milliken ON, Pham H, Seyit R, Napoli R, et al. 2009. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. The Plant Cell 21:72−89 doi: 10.1105/tpc.108.063503
|
[21] |
Liu C, Jun JH, Dixon RA. 2014. MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant physiology 165:1424−39 doi: 10.1104/pp.114.241877
|
[22] |
Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, et al. 2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology 140:499−511 doi: 10.1104/pp.105.067231
|
[23] |
Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, et al. 2008. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiology 147:2041−53 doi: 10.1104/pp.108.118919
|
[24] |
Amato A, Cavallini E, Walker AR, Pezzotti M, Bliek M, et al. 2019. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal 99:1220−41 doi: 10.1111/tpj.14419
|
[25] |
Kim SG, Kim SY, Park CM. 2007. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647−54 doi: 10.1007/s00425-007-0513-3
|
[26] |
Ogo Y, Kobayashi T, Nakanishi Itai R, Nakanishi H, Kakei Y, et al. 2008. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. Journal of Biological Chemistry 283:13407−13417 doi: 10.1074/jbc.M708732200
|
[27] |
Zhong R, Lee C, Ye Z. 2010. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant 3:1087−103 doi: 10.1093/mp/ssq062
|
[28] |
Jeong CY, Lee WJ, Truong HA, Trịnh CS, Jin JY, et al. 2018. Dual role of SND1 facilitates efficient communication between abiotic stress signalling and normal growth in Arabidopsis. Scientific reports 8:10114 doi: 10.1038/s41598-018-28413-x
|
[29] |
Zhong R, Richardson EA, Ye Z. 2007. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. The Plant Cell 19:2776−92 doi: 10.1105/tpc.107.053678
|
[30] |
Zhong R, Ye Z. 2011. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant and Cell Physiology 53:368−80 doi: 10.1093/pcp/pcr185
|
[31] |
Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. 2015. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Frontiers in Plant Science 6:288 doi: 10.3389/fpls.2015.00288
|
[32] |
Li S, Santini JM, Nicolaou O, Parish RW. 1996. A novel myb-related gene from Arabidopsis thaliana. FEBS Letters 379:117−21 doi: 10.1016/0014-5793(95)01461-6
|
[33] |
Liu Q, Luo L, Zheng L. 2018. Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences 19:335 doi: 10.3390/ijms19020335
|
[34] |
Abe H, Urao T, Ito T, Seki M, Shinozaki K, et al. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15:63−78 doi: 10.1105/tpc.006130
|
[35] |
Agarwal PK, Agarwal P, Reddy MK, Sopory SK. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports 25:1263−74 doi: 10.1007/s00299-006-0204-8
|
[36] |
Su CF, Wang YC, Hsieh TH, Lu C, Tseng TH, et al. 2010. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiology 153:145−58 doi: 10.1104/pp.110.153015
|
[37] |
Chen Y, Chen Z, Kang J, Kang D, Gu H, et al. 2013. AtMYB14 regulates cold tolerance in Arabidopsis. Plant Molecular Biology Reporter 31:87−97 doi: 10.1007/s11105-012-0481-z
|
[38] |
Dai H, Li W, Han G, Yang Y, Ma Y, et al. 2013. Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Scientia Horticulturae 164:202−8 doi: 10.1016/j.scienta.2013.09.033
|
[39] |
Song MR, Chen KQ, Guo YN, Lei YY, Dai HY. 2017. Construction of a new RNAi vector for gene silencing in plants. Journal of Shenyang Agricultural University 48:719−24
|