[1] |
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651−81 doi: 10.1146/annurev.arplant.59.032607.092911
|
[2] |
Zhu J-K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247−73 doi: 10.1146/annurev.arplant.53.091401.143329
|
[3] |
Munns R, Gilliham M. 2015. Salinity tolerance of crops - what is the cost? New Phytologist 208:668−73 doi: 10.1111/nph.13519
|
[4] |
Hasegawa PM, Bressan RA, Zhu J, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51:463−99 doi: 10.1146/annurev.arplant.51.1.463
|
[5] |
Xiong L, Schumaker KS, Zhu J-K. 2002. Cell signaling during cold, drought, and salt stress. The Plant Cell 14:165−183 doi: 10.1105/tpc.010278
|
[6] |
Vinocur B, Altman A. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology 16:123−132 doi: 10.1016/j.copbio.2005.02.001
|
[7] |
Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology 57:781−803 doi: 10.1146/annurev.arplant.57.032905.105444
|
[8] |
Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, et al. 2007. Legume transcription factors: Global regulators of plant development and response to the environment. Plant Physiology 144:538−49 doi: 10.1104/pp.107.098061
|
[9] |
Zhu Q, Guo A, Gao G, Zhong Y, Xu M, et al. 2007. DPTF: a database of poplar transcription factors. Bioinformatics 23:1307−8 doi: 10.1093/bioinformatics/btm113
|
[10] |
Hu L, Liu S. 2011. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genetics and Molecular Biology 34:624−33 doi: 10.1590/S1415-47572011005000054
|
[11] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140:411−32 doi: 10.1104/pp.105.073783
|
[12] |
Yan HW, Hong L, Zhou YQ, Jiang HY, Zhu SW, et al. 2013. A genome-wide analysis of the ERF gene family in sorghum. Genetics and Molecular Research 12:2038−55 doi: 10.4238/2013.May.13.1
|
[13] |
Zhang H, Jin J, Tang L, Zhao Y, Gu X, et al. 2011. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Research 39:D1114−D1117 doi: 10.1093/nar/gkq1141
|
[14] |
Gujjar RS, Akhtar M, Singh M. 2014. Transcription factors in abiotic stress tolerance. Indian Journal of Plant Physiology 19:306−16 doi: 10.1007/s40502-014-0121-8
|
[15] |
Agarwal PK, Jha B. 2010. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biologia Plantarum 54:201−12 doi: 10.1007/s10535-010-0038-7
|
[16] |
Hazen SP, Wu Y, Kreps JA. 2003. Gene expression profiling of plant responses to abiotic stress. Functional & integrative genomics 3:105−11 doi: 10.1007/s10142-003-0088-4
|
[17] |
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:86−96 doi: 10.1016/j.bbagrm.2011.08.004
|
[18] |
Rehman S, Mahmood T. 2015. Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiologiae Plantarum 37:1 doi: 10.1007/s11738-014-1746-y
|
[19] |
Thirugnanasambantham K, Durairaj S, Saravanan S, Karikalan K, Muralidaran S, et al. 2015. Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Molecular Biology Reporter 33:347−57 doi: 10.1007/s11105-014-0799-9
|
[20] |
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, et al. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and biophysical research communications 290:998−1009 doi: 10.1006/bbrc.2001.6299
|
[21] |
Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, et al. 2010. Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Molecular Genetics and Genomics 284:455−75 doi: 10.1007/s00438-010-0580-1
|
[22] |
Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, et al. 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant and Cell Physiology 52:344−60 doi: 10.1093/pcp/pcq196
|
[23] |
Zhuang J, Cai B, Peng R, Zhu B, Jin X, et al. 2008. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochemical and Biophysical Research Communications 371:468−74 doi: 10.1016/j.bbrc.2008.04.087
|
[24] |
Cheng M, Liao P, Kuo W, Lin T. 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology 162:1566−1582 doi: 10.1104/pp.113.221911
|
[25] |
Guo Z, Chen X, Wu X, Ling J, Xu P. 2004. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Molecular Biology 55:607−18 doi: 10.1007/s11103-004-1521-3
|
[26] |
Rong W, Qi L, Wang A, Ye X, Du L, et al. 2014. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal 12:468−79 doi: 10.1111/pbi.12153
|
[27] |
Yao W, Zhang X, Zhou B, Zhao K, Li R,et al. 2017. Expression pattern of ERF gene family under multiple abiotic stresses in Populus simonii × P-nigra. Frontiers in Plant Science 8:181 doi: 10.3389/fpls.2017.00181
|
[28] |
Wang S, Yao W, Wei H, Jiang T, Zhou B. 2014. Expression patterns of ERF genes underlying abiotic stresses in di-haploid Populus simonii × P. nigra. The Scientific World Journal 2014:745091 doi: 10.1155/2014/745091
|
[29] |
Cheng Z, Zhang X, Zhao K, Yao W, Li R, et al. 2019. Over-expression of ERF38 gene enhances salt and osmotic tolerance in transgenic poplar. Frontiers in Plant Science 10:1375 doi: 10.3389/fpls.2019.01375
|
[30] |
Jambunathan N. 2010. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. In Plant Stress Tolerance, Methods in Molecular Biology (Methods and Protocols), eds. Sunkar R, vol 639. Clifton, N.J.: Humana Press. pp. 291−297 https://doi.org/10.1007/978-1-60761-702-0_18
|
[31] |
Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB. 2013. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079−89 doi: 10.1007/s00709-013-0484-0
|
[32] |
Qin F, Shinozaki K, Yamaguchi-Shinozaki K. 2011. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant and Cell Physiology 52:1569−1582 doi: 10.1093/pcp/pcr106
|
[33] |
Shi Y, Tian S, Hou L, Huang X, Zhang X, et al. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. The Plant Cell 24:2578−95 doi: 10.1105/tpc.112.098640
|
[34] |
Bohnert HJ, Gong Q, Li P, Ma S. 2006. Unraveling abiotic stress tolerance mechanisms-getting genomics going. Current Opinion in Plant Biology 9:180−188 doi: 10.1016/j.pbi.2006.01.003
|
[35] |
Mickelbart MV, Hasegawa PM, Bailey-Serres J. 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics 16:237−51 doi: 10.1038/nrg3901
|
[36] |
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in arabidopsis and grasses. Plant Physiology 149:88−95 doi: 10.1104/pp.108.129791
|
[37] |
Zhang G, Chen M, Li L, Xu Z, Chen X, et al. 2009. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany 60:3781−96 doi: 10.1093/jxb/erp214
|
[38] |
Lv K, Wu W, Wei H, Liu G. 2021. A systems biology approach identifies BplERF1 as a regulator of cold tolerance in Betula platyphylla. Forestry Research 1:11 doi: 10.48130/fr-2021-0011
|
[39] |
Lv K, Li J, Zhao K, Chen S, Nie J, et al. 2019. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Science 292:113075 doi: 10.1016/j.plantsci.2019.110375
|
[40] |
Cao S, Chen Z, Liu G, Jiang L, Yuan H, et al. 2009. The Arabidopsis Ethylene-Insensitive 2 gene is required for lead resistance. Plant Physiology and Biochemistry 47:308−72 doi: 10.1016/j.plaphy.2008.12.013
|
[41] |
Guan C, Ji J, Wu D, Li X, Jin C, et al. 2015. The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. Molecular Breeding 35:123 doi: 10.1007/s11032-015-0313-6
|
[42] |
Lestari R, Rio M, Martin F, Leclercq J, Woraathasin N, et al. 2018. Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation. Plant Biotechnology Journal 16:322−36 doi: 10.1111/pbi.12774
|
[43] |
Yao W, Wang S, Zhou B, Jiang T. 2016. Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance. Tree Physiology 36:896−908 doi: 10.1093/treephys/tpw004
|
[44] |
Jung H, Chung PJ, Park SH, Redillas MCFR, Kim YS, et al. 2017. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnology Journal 15:1295−308 doi: 10.1111/pbi.12716
|
[45] |
Zhang Z, Zhang H, Quan R, Wang X, Huang R. 2009. Transcriptional Regulation of the Ethylene Response Factor LeERF2 in the Expression of Ethylene Biosynthesis Genes Controls Ethylene Production in Tomato and Tobacco. Plant Physiology 150:365−77 doi: 10.1104/pp.109.135830
|
[46] |
Zhang Z, Huang R. 2010. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Molecular Biology 73:241−49 doi: 10.1007/s11103-010-9609-4
|
[47] |
Hu N, Tang N, Yan F, Bouzayen M, Li Z. 2014. Effect of LeERF1 and LeERF2 overexpression in the response to salinity of young tomato (Solanumlycopersicum cv. Micro-Tom) seedlings. Acta Physiologiae Plantarum 36:1703−12 doi: 10.1007/s11738-014-1545-5
|
[48] |
Yu Y, Yang D, Zhou S, Gu J, Wang F, et al. 2017. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254:401−8 doi: 10.1007/s00709-016-0960-4
|
[49] |
Wan L, Zhang J, Zhang H, Zhang Z, Quan R, et al. 2011. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE 6:e25216 doi: 10.1371/journal.pone.0025216
|
[50] |
Saelim L, Akiyoshi N, Tan T, Ihara A, Yamaguchi M, et al. 2019. Arabidopsis Group IIId ERF proteins positively regulate primary cell wall-type CESA genes. Journal of Plant Research 132:117−29 doi: 10.1007/s10265-018-1074-1
|
[51] |
Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, Van Leene J, et al. 2013. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342:860−63 doi: 10.1126/science.1240667
|
[52] |
Wessels B, Seyfferth C, Escamez S, Vain T, Antos K, et al. 2019. An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition. New Phytologist 224:1585−99 doi: 10.1111/nph.15960
|
[53] |
Han D, Han J, Yang G, Wang S, Xu T, et al. 2020. An ERF Transcription factor gene from Malus baccata (L.) Borkh, MbERF11, affects cold and salt stress tolerance in Arabidopsis. Forests 11:514 doi: 10.3390/f11050514
|
[54] |
Wang M, Dai W, Du J, Ming R, Dahro B, Liu JH. 2019. ERF109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process. Plant Biotechnology Journal 17:1316−32 doi: 10.1111/pbi.13056
|
[55] |
Qin L, Wang L, Guo Y, Li Y, Ümüt H, et al. 2017. An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance. Plant Science 265:154−66 doi: 10.1016/j.plantsci.2017.10.006
|
[56] |
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24 doi: 10.1016/j.cell.2016.08.029
|
[57] |
de Freitas PAF, de Carvalho HH, Costa JH, de Souza Miranda R, da Cruz Saraiva KD, et al. 2019. Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Reports 38:403−416 doi: 10.1007/s00299-019-02382-5
|
[58] |
Wani SH, Gosal SS. 2011. genetic engineering for osmotic stress tolerance in plants – role of proline. Social ence Electronic Publishing 3:14−25
|
[59] |
Li M, Li Y, Li H, Wu G. 2011. Ectopic expression of FaDREB2 enhances osmotic tolerance in paper mulberry. Journal of Integrative Plant Biology 53:951−960 doi: 10.1111/j.1744-7909.2011.01087.x
|
[60] |
Xiong J, Wang H, Tan X, Zhang C, Naeem MS. 2018. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiology and Biochemistry 124:88−99 doi: 10.1016/j.plaphy.2018.01.001
|
[61] |
Singh A, Grover A. 2008. Genetic engineering for heat tolerance in plants. Physiology and Molecular Biology of Plants 14:155 doi: 10.1007/s12298-008-0014-2
|
[62] |
Tiwari LD, Mittal D, Chandra Mishra R, Grover A. 2015. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants. Plant Physiology and Biochemistry 92:48−55 doi: 10.1016/j.plaphy.2015.03.012
|
[63] |
Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30 doi: 10.1016/j.plaphy.2010.08.016
|
[64] |
Suzuki N, Mittler R. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum 126:45−51 doi: 10.1111/j.0031-9317.2005.00582.x
|
[65] |
Hu Z, Huang X, Amombo E, Liu A, Fan J, et al. 2020. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. Plant Science 294:110432 doi: 10.1016/j.plantsci.2020.110432
|
[66] |
Feng K, Yu J, Cheng Y, Ruan M, Wang R, et al. 2016. The SOD gene family in tomato: identification, phylogenetic relationships, and expression patterns. Frontiers in Plant Science 7:1279 doi: 10.3389/fpls.2016.01279
|
[67] |
Chen J, Song L, Dai E, Gan N, Liu Z. 2004. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:393−400 doi: 10.1016/j.toxicon.2004.01.011
|
[68] |
Mittler R, Vanderauwera S, Gollery M, van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490−98 doi: 10.1016/j.tplants.2004.08.009
|
[69] |
Parida AK, Das AB, Mohanty P. 2004. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology 161:531−42 doi: 10.1078/0176-1617-01084
|
[70] |
Baxter A, Mittler R, Suzuki N. 2014. ROS as key players in plant stress signalling. Journal of Experimental Botany 65:1229−40 doi: 10.1093/jxb/ert375
|
[71] |
Pan Y, Seymour GB, Lu C, Hu Z, Chen X, et al. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Reports 31:349−60 doi: 10.1007/s00299-011-1170-3
|
[72] |
Group of Tree Breeding, Northeast Eastern Forestry Academy. 1977. Induction of haploid poplar plantlets from pollen. Journal of Genetics and Genomics 1:49−54+93−94
|
[73] |
Shinshi H, Usami S, Ohme-Takagi M. 1995. Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Molecular Biology 27:923−933 doi: 10.1007/BF00037020
|