[1] Food and Agriculture Organization of the United Nations. 2021. Grasslands, Rangelands and Forage Crops. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/grasslands-rangelands-and-forage-crops/en/
[2] Turner LR, Donaghy DJ, Lane PA, Rawnsley RP. 2006. Effect of defoliation management, based on leaf stage, on perennial ryegrass (Lolium perenne L.), prairie grass (Bromus willdenowii Kunth.) and cocksfoot (Dactylis glomerata L.) under dryland conditions. 1. Regrowth, tillering and water-soluble carbohydrate concentration. Grass and Forage Science 61:164−74 doi: 10.1111/j.1365-2494.2006.00523.x
[3] Hartley W. 1973. Studies on the origin, evolution, and distribution of the Gramineae. V. The subfamily Festucoideae. Australian Journal of Botany 21:201−34 doi: 10.1071/BT9730201
[4] Clay K, Schardl C. 2002. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist 160:S99−S127 doi: 10.1086/342161
[5] Caradus JR, Johnson LJ. 2020. Epichloë fungal endophytes − From a biological curiosity in wild grasses to an essential component of resilient high performing ryegrass and fescue pastures. Journal of Fungi 6:322 doi: 10.3390/jof6040322
[6] Panaccione DG, Beaulieu WT, Cook D. 2014. Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology 28:299−314 doi: 10.1111/1365-2435.12076
[7] Johnson LJ, de Bonth ACM, Briggs LR, Caradus JR, Finch SC, et al. 2013. The exploitation of epichloae endophytes for agricultural benefit. Fungal Diversity 60:171−88 doi: 10.1007/s13225-013-0239-4
[8] Hume DE, Ryan GD, Gibert A, Helander M, Mirlohi A, et al. 2016. Epichloë fungal endophytes for grassland ecosystems. In Sustainable Agriculture Reviews, ed. Lichtfouse E, 19:vi, 399. Switzerland: Springer International Publishing. pp 233−305. https://doi.org/10.1007/978-3-319-26777-7_6
[9] Easton HS. 2007. Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding. Euphytica 154:295−306 doi: 10.1007/s10681-006-9187-3
[10] Fletcher LR. 1999. "Non-toxic" endophytes in ryegrass and their effect on livestock health and production. In Proc. Ryegrass Endophyte - An Essential New Zealand Symbiosis, eds. Woodfield DR, Matthew C. Napier, New Zealand: New Zealand Grassland Association. pp 133−39 https://doi.org/10.33584/rps.7.1999.3393
[11] Finch SC, Prinsep MR, Popay AJ, Wilkins AL, Webb NG, et al. 2020. Identification and structure elucidation of epoxyjanthitrems from Lolium perenne infected with the endophytic fungus Epichloë festucae var. lolii and determination of the tremorgenic and anti-insect activity of epoxyjanthitrem I. Toxins (Basel) 12:526 doi: 10.3390/toxins12080526
[12] Nixon CG. 2016. How Valuable is that Plant Species?: Application of a Method for Enumerating the Contribution of Selected Plant Species to New Zealand's GDP. Wellington: Ministry for Primary Industries https://www.mpi.govt.nz/dmsdocument/14527/direct
[13] Hendriks SJ, Donaghy DJ, Matthew C, Bretherton MR, Sneddon NW, et al. 2016. Dry matter yield, nutritive value and tiller density of tall fescue and perennial ryegrass swards under grazing. Journal of New Zealand Grasslands 78:149−56 doi: 10.33584/jnzg.2016.78.512
[14] Caradus JR, Johnson LJ. 2019. Improved adaptation of temperate grasses through mutualism with fungal endophytes. In Endophyte biotechnology: potential for agriculture and pharmacology, ed. Schouten A. Wallingford, UK: CABI. pp 85−108. https://doi.org/10.1079/9781786399427.0085
[15] Caradus J, Chapman D, Cookson T, Cotching B, Deighton M, et al. 2021. Epichloë endophytes – new perspectives on a key ingredient for resilient perennial grass pastures. In Proceeding Resilient Pastures Symposium. Napier, New Zealand: New Zealand Grasslands Association. pp. 57−70. https://doi.org/10.33584/rps.17.2021.3435
[16] Clay K. 2001. Symbiosis and the regulation of communities. American Zoologist 41:810−24 doi: 10.1093/icb/41.4.810
[17] Johnson LJ, Voisey C, Faville M, Moon CD, Simpson WR, et al. 2019. Advances and perspectives in breeding for improved grass-endophyte associations. Improving sown grasslands through breeding and management, Joint Symposium EFG/Eucarpia, Zurich, Switzerland, 2019. Grassland Science in Europe 24:351−63
[18] Woodfield DR, Judson HJ. 2019. Balancing pasture productivity with environmental and animal health requirements. In Improving grassland and pasture management in temperate agriculture. UK: Burleigh Dodds Science Publishing. pp 237−52. https://doi.org/10.19103/as.2017.0024.08
[19] Hume DE, Stewart AV, Simpson WR, Johnson RD. 2020. Epichloë fungal endophytes play a fundamental role in New Zealand grasslands. Journal of the Royal Society of New Zealand 50:279−98 doi: 10.1080/03036758.2020.1726415
[20] Ferguson CM, Barratt BIP, Bell N, Goldson SL, Hardwick S, et al. 2019. Quantifying the economic cost of invertebrate pests to New Zealand's pastoral industry. New Zealand Journal of Agricultural Research 62:255−315 doi: 10.1080/00288233.2018.1478860
[21] Popay AJ, Hume DE, Baltus JG, Latch GCM, Tapper BA, et al. 1999. Field performance of perennial ryegrass (Lolium perenne) infected with toxin-free fungal endophytes (Neotyphodium spp.). Proc. Ryegrass Endophyte: An Essential New Zealand Symbiosis, Napier, New Zealand. Palmerston North, New Zealand: New Zealand Grassland Association. pp. 113−22. https://doi.org/10.33584/rps.7.1999.3388
[22] Pennell CGL, Popay AJ, Ball OJP, Hume DE, Baird DB. 2005. Occurrence and impact of pasture mealybug (Balanococcus poae) and root aphid (Aploneura lentisci) on ryegrass (Lolium spp.) with and without infection by Neotyphodium fungal endophytes. New Zealand Journal of Agricultural Research 48:329−37 doi: 10.1080/00288233.2005.9513663
[23] Popay AJ, Baltus JG. 2001. Black beetle damage to perennial ryegrass infected with AR1 endophyte. Proc. New Zealand Grassland Association, Hamilton, New Zealand, 2001, 63: 267−71. New Zealand Grassland Association. https://doi.org/10.33584/jnzg.2001.63.2415
[24] Popay AJ, Cox NR. 2016. Aploneura lentisci (Homoptera: Aphididae) and its interactions with fungal endophytes in perennial ryegrass (Lolium perenne). Frontiers in Plant Science 7:1395 doi: 10.3389/fpls.2016.01395
[25] Jensen JG, Popay AJ. 2004. Perennial ryegrass infected with AR37 endophyte reduces survival of porina larvae. Proc. New Zealand Plant Protection, Rotorua New Zealand, 2004, 57: 323−28. New Zealand Plant Protection Society https://doi.org/10.30843/nzpp.2004.57.6930
[26] New Zealand Plant Breeding & Research Association. 2020. Fact sheet - Endophyte Insect Control. https://beeflambnz.com/knowledge-hub/PDF/endophyte-update.pdf
[27] Popay AJ, Wyatt RT. 1995. Resistance to Argentine stem weevil in perennial ryegrass infected with endophytes producing different alkaloids. Proc. New Zealand Plant Protection, Hastings, New Zealand, 1995, 48: 229−36: New Zealand Plant Protection Society. https://doi.org/10.30843/nzpp.1995.48.11487
[28] Ball OJP, Christensen MJ, Prestidge RA. 1994. Effect of selected isolates of Acremonium endophytes on adult black beetle (Heteronychus arator) feeding. Proc. New Zealand Plant Protection, Rotorua, New Zealand, 1994, 47: 227−31: New Zealand Plant Protection Society. https://doi.org/10.30843/nzpp.1994.47.11101
[29] Fletcher LR, Sutherland BL. 2009. Sheep responses to grazing ryegrass with AR37. Proc. New Zealand Grassland Association, 2009, 71: 127−32: New Zealand Grassland Association. https://doi.org/10.33584/jnzg.2009.71.2756
[30] Thom ER, Waugh CD, Minnee EMK, Waghorn GC. 2007. A new generation ryegrass endophyte - the first results from dairy cows fed AR37. Proc. Proceedings of the 6th International Symposium on Fungal Endophytes of Grasses., Christchurch, New Zealand, 13: 293−96. New Zealand Grassland Association. https://doi.org/10.33584/rps.13.2006.3146
[31] Patchett BJ, Chapman RB, Fletcher LR, Gooneratne SR. 2008. Endophyte-infected Festuca pratensis containing loline alkaloids deters feeding by Listronotus bonariensis. New Zealand Plant Protection 61:205−9 doi: 10.30843/nzpp.2008.61.6843
[32] Pennell C, Ball OJP. 1999. The effects of Neotyphodium endophytes in tall fescue on pasture mealy bug (Balanococcus poae). Proc. New Zealand Plant Protection, Auckland, New Zeaaland, 1999, 52: 259−63. New Zealand Plant Protection Society. https://doi.org/10.30843/nzpp.1999.52.11582
[33] Patchett BJ, Gooneratne RB, Chapman B, Fletcher LR. 2011. Effects of loline-producing endophyte-infected meadow fescue ecotypes on New Zealand grass grub (Costelytra Zealandica). New Zealand Journal of Agricultural Research 54:303−13 doi: 10.1080/00288233.2011.608686
[34] Jensen JG, Popay AJ, Tapper BA. 2009. Argentine stem weevil adults are affected by meadow fescue endophyte and its loline alkaloids. Proc. New Zealand Plant Protection, 2009, 62: 12−8. New Zealand Plant Protection Society. https://doi.org/10.30843/nzpp.2009.62.4800
[35] Popay AJ, Lane GA. 2000. The effect of crude extracts containing loline alkaloids on two New Zealand insect pests. Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium, Soest, Germany, 2000: 471−75
[36] Stewart A, Kerr GA, Lissaman W, Rowarth JS. 2014. Chapter 8 − Endophyte in ryegrass and fescue. In Pasture and forage plants for New Zealand. Grassland Research and Practice Series 8, ed. Stewart A, Kerr G, Lissaman W, Rowarth J. New Zealand Grassland Association. pp 66−77 https://www.nzgajournal.org.nz/index.php/rps/issue/view/112
[37] Barker GM, Patchett BJ, Cameron NE. 2015. Epichloë uncinata infection and loline content afford Festulolium grasses protection from black beetle (Heteronychus arator). New Zealand Journal of Agricultural Research 58:35−56 doi: 10.1080/00288233.2014.978480
[38] Barker GM, Patchett BJ, Cameron NE. 2015. Epichloë uncinata infection and loline content protect Festulolium grasses from crickets (Orthoptera: Gryllidae). Journal of Economic Entomology 108:789−97 doi: 10.1093/jee/tou058
[39] Barker GM, Patchett BJ, Gillanders TJ, Brown GS, Montel S, et al. 2015. Feeding and oviposition by Argentine stem weevil on Epichloe uncinata-infected loline-containing Festulolium. Proc. New Zealand Plant Protection, 2015, 68: 212−7: New Zealand Plant Protection Society. https://doi.org/10.30843/nzpp.2015.68.5808
[40] Pennell CG, Rolston MP. 2019. AvanexTM Unique endophyte technology-bird deterrent endophytic grass for amenity turf and airports. Proceeding 22nd International Grasslands Congress, Syndey, Australia, 2019: 405−8 https://www.grassland.org.nz/publications/nzgrassland_publication_2590.pdf
[41] Malinowski DP, Belesky DP. 2000. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science 40:923−40 doi: 10.2135/cropsci2000.404923x
[42] Rhoades DF. 1983. Herbivore population dynamics and plant chemistry. In Variable Plants and Herbivores in Natural and Managed Systems, eds. Denno RF, McClure MS, 6:717. Orlando, FL: Academic Press NY. pp 155−220. https://doi.org/10.1016/b978-0-12-209160-5.50012-x
[43] White TCR. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90−105 doi: 10.1007/BF00379790
[44] Rhoades DF. 1985. Offensive-defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. The American Naturalist 125:205−38 doi: 10.1086/284338
[45] Lambers H, Chapin III FS, Pons TL. 2008. Plant physiological ecology. Springer Science & Business Media
[46] Mullan B, Porteous A, Wratt D, Hollis M. 2005. Changes in drought risk with climate change. Wellington, New Zealand https://docs.niwa.co.nz/library/public/WLG2005-23execsum.pdf
[47] Strzepek K, Yohe G, Neumann J, Boehlert B. 2010. Characterizing changes in drought risk for the United States from climate change. Environmental Research Letters 5:044012 doi: 10.1088/1748-9326/5/4/044012
[48] Reisinger A, Mullan A, Manning M, Wratt D, Nottage R. 2010. Global and local climate change scenarios to support adaptation in New Zealand. In Climate change adaptation in New Zealand: Future scenarios and some sectoral perspectives, eds. Nottage RAC, Wratt DS, Bornman JF, Jones K. Wellington, New Zealand: New Zealand Climate Change Centre, Victoria University of Wellington. pp 26−43
[49] Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, et al. 2014. Global warming and changes in drought. Nature Climate Change 4:17−22 doi: 10.1038/nclimate2067
[50] King AD, Pitman AJ, Henley BJ, Ukkola AM, Brown JR. 2020. The role of climate variability in Australian drought. Nature Climate Change 10:177−9 doi: 10.1038/s41558-020-0718-z
[51] Palmer JA. 2009. The future of pastoral farming in a changing climate. Proc. New Zealand Grassland Association, Waitangi, New Zealand, 2009, 71:69−72. New Zealands Grasslands Association. https://doi.org/10.33584/jnzg.2009.71.2773
[52] Hunt WF, Easton HS. 1989. Fifty years of ryegrass research in New Zealand. Proc. New Zealand Grassland Association, Wanganui, New Zealand, 1989, 50: 11−23. New Zealand Grassland Association. https://doi.org/10.33584/jnzg.1989.50.1876
[53] Matthew C, van der Linden A, Hussain S, Easton HS, Hatier JHB, et al. 2012. Which way forward in the quest for drought tolerance in perennial ryegrass? Proc. New Zealand Grassland Association, Gore, New Zealand, 2012, 74: 195−200: New Zealand Grassland Association https://doi.org/10.33584/jnzg.2012.74.2854
[54] Macdonald KA, Matthew C, Glassey CB, McLean N. 2011. Dairy farm systems to aid persistence. Proc. Pasture Persistence Symposium Hamilton, New Zealand, 2011, 15: 199−209. New Zealands Grasslands Association https://doi.org/10.33584/rps.15.2011.3199
[55] Korte CJ, Chu ACP. 1983. Some effects of drought on perennial ryegrass swards. Proc. New Zealand Grassland Association, Blenheim, New Zealand, 1983, 44: 211−16. New Zealands Grasslands Association. https://doi.org/10.33584/jnzg.1983.44.1625
[56] Cui Y, Wang J, Wang X, Jiang Y. 2015. Phenotypic and genotypic diversity for drought tolerance among and within perennial ryegrass accessions. HortScience 50:1148−54 doi: 10.21273/HORTSCI.50.8.1148
[57] Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72:673−89 doi: 10.1007/s00018-014-1767-0
[58] Munné-Bosch S, Alegre L. 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology 31:203−16 doi: 10.1071/FP03236
[59] Reid JB, Crush JR. 2013. Root turnover in pasture species: perennial ryegrass (Lolium perenne L.). Crop and Pasture Science 64:165−77 doi: 10.1071/CP13079
[60] Thom ER, Popay AJ, Waugh CD, Minneé EMK. 2014. Impact of novel endophytes in perennial ryegrass on herbage production and insect pests from pastures under dairy cow grazing in northern New Zealand. Grass and Forage Science 69:191−204 doi: 10.1111/gfs.12040
[61] Decunta FA, Pérez LI, Malinowski DP, Molina-Montenegro MA, Gundel PE. 2021. A systematic review on the effects of Epichloë fungal endophytes on drought tolerance in cool-season grasses. Frontiers in Plant Science 12:380 doi: 10.3389/fpls.2021.644731
[62] West CP. 1994. Physiology and drought tolerance of endophyte-infected grasses. In Biotechnology of Endophytic Fungi of Grasses, eds. Bacon CW, White J F, 87. Boca Raton, FL: CRC Press. pp 87−99. https://doi.org/10.1201/9781351070324-7
[63] Assuero SG, Tognetti JA, Colabelli MR, Agnusdei MG, Petroni EC, et al. 2006. Endophyte infection accelerates morpho-physiological responses to water deficit in tall fescue. New Zealand Journal of Agricultural Research 49:359−70 doi: 10.1080/00288233.2006.9513726
[64] Ravel C, Courty C, Coudret A, Charmet G. 1997. Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173−81 doi: 10.1051/agro:19970304
[65] Vahid J, Bihamta MR, Islam M, Farrokh D. 2015. The effect of endophytic fungi in drought resistance of Lolium Perenne in Iran (Isfahan) condition. Advanced Studies in Biology 7:245−57 doi: 10.12988/asb.2015.5423
[66] He L, Hatier J, Card S, Matthew C. 2013. Endophyte-infection reduces leaf dehydration of ryegrass and tall fescue plants under moderate water deficit. Proceedings of the New Zealand Grasslands Association, Tauranga, New Zealand, 2013: 5−7. New Zealand Grasslands Association https://doi.org/10.33584/jnzg.2013.75.2936
[67] Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, et al. 2003. Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass and Forage Science 58:407−15 doi: 10.1111/j.1365-2494.2003.00393.x
[68] Eerens JPJ, Lucas RJ, Easton S, White JGH. 1998. Influence of the endophyte (Neotyphodium lolii) on morphology, physiology, and alkaloid synthesis of perennial ryegrass during high temperature and water stress. New Zealand Journal of Agricultural Research 41:219−26 doi: 10.1080/00288233.1998.9513305
[69] Kane KH. 2011. Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environmental and Experimental Botany 71:337−44 doi: 10.1016/j.envexpbot.2011.01.002
[70] Li F, Duan T, Li Y. 2020. Effects of the fungal endophyte Epichloë festucae var. lolii on growth and physiological responses of perennial ryegrass cv. fairway to combined drought and pathogen stresses. Microorganisms 8:1917 doi: 10.3390/microorganisms8121917
[71] Hahn H, McManus MT, Warnstorff K, Monahan BJ, Young CA, et al. 2008. Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environmental and Experimental Botany 63:183−99 doi: 10.1016/j.envexpbot.2007.10.021
[72] Hume DE, Popay AJ, Barker DJ. 1993. Effect of Acremonium endophyte on growth of ryegrass and tall fescue under varying levels of soil moisture and Argentine stem weevil attack. Proc. 2nd International Symposium on Acremonium/Grass Interactions, Palmerston North, New Zealand, 1993: 161−4:
[73] Barker DJ, Hume DE, Quigley PE. 1997. Negligible physiological responses to water deficit in endophyte-infected and uninfected perennial ryegrass. Neotyphodium/Grass Interactions, eds. CW Bacon, NS Hill. New York: Plenum Press. pp 137−39 https://doi.org/10.1007/978-1-4899-0271-9_20
[74] Malinowski DP, Belesky DP, Lewis GC. 2005. Abiotic Stresses in Endophytic Grasses. Neotyphodium in Cool-Season Grasses, eds. Roberts CA, West CP, Spiers DE. Ames, IA: Blackwell Publishing. pp 187−99 https://doi.org/10.1002/9780470384916.ch8
[75] MacLean B, Matthew C, Latch GCM, Barker DJ. 1993. The effect of endophyte on drought resistance in tall fescue. Proc. 2nd International Symposium on Acremonium/Grass Interactions, Palmerston North New Zealand, 1993: 165−69
[76] Cheplick GP, Perera A, Koulouris K. 2000. Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Functional Ecology 14:657−67 doi: 10.1046/j.1365-2435.2000.00466.x
[77] Marks S, Clay K. 2007. Low resource availability differentially affects the growth of host grasses infected by fungal endophytes. International Journal of Plant Sciences 168:1269−77 doi: 10.1086/521834
[78] He L, Hatier JHB, Matthew C. 2017. Drought tolerance of two perennial ryegrass cultivars with and without AR37 endophyte. New Zealand Journal of Agricultural Research 60:173−88 doi: 10.1080/00288233.2017.1294083
[79] Briggs L, Crush J, Ouyang L, Sprosen J. 2013. Neotyphodium endophyte strain and superoxide dismutase activity in perennial ryegrass plants under water deficit. Acta Physiologiae Plantarum 35:1513−20 doi: 10.1007/s11738-012-1192-7
[80] Belesky DP, Stringer WC, Hill NS. 1989. Influence of endophyte and water regime upon tall fescue accessions. I. Growth characteristics. Annals of Botany 63:495−503 doi: 10.1093/oxfordjournals.aob.a087775
[81] Elbersen HW, West CP. 1996. Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass and Forage Science 51:333−42 doi: 10.1111/j.1365-2494.1996.tb02068.x
[82] Hill NS, Pachon JG, Bacon CW. 1996. Acremonium coenophialum-mediated short-and long-term drought acclimation in tall fescue. Crop Science 36:665−72 doi: 10.2135/cropsci1996.0011183X003600030025x
[83] Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE. 1989. Effect of the tall fescue endophyte on plant response to environmental stress. Agronomy Journal 81:83−90 doi: 10.2134/agronj1989.00021962008100010015x
[84] Arechavaleta M, Bacon CW, Plattner RD, Hoveland CS, Radcliffe DE. 1992. Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Applied and Environmental Microbiology 58:857−61 doi: 10.1128/aem.58.3.857-861.1992
[85] Kennedy CW, Bush LP. 1983. Effect of environmental and management factors on the accumulation of N-acetyl and N-formyl loline alkaloids in tall fescue. Crop Science 23:547−52 doi: 10.2135/cropsci1983.0011183X002300030024x
[86] Richardson MD, Chapman GW Jr, Hoveland CS, Bacon CW. 1992. Sugar alcohols in endophyte-infected tall fescue under drought. Crop Science 32:1060−1 doi: 10.2135/cropsci1992.0011183X003200040045x
[87] Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL. 2013. Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biology 13:127 doi: 10.1186/1471-2229-13-127
[88] Bacon CW. 1993. Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agriculture, Ecosystems and Environment 44:123−41 doi: 10.1016/0167-8809(93)90042-N
[89] White RH, Engelke MC, Morton SJ, Johnson-Cicalese JM, Ruemmele BA. 1992. Acremonium endophyte effects on tall fescue drought tolerance. Crop Science 32:1392−6 doi: 10.2135/cropsci1992.0011183X003200060017x
[90] West CP, Gwinn KD. 1993. Role of Acremonium in drought, pest, and disease tolerances of grasses. Proc. 2nd International Symposium on Acremonium/Grass Interactions, Palmerston North, New Zealand, 1993: 131−40
[91] Swarthout D, Harper E, Judd S, Gonthier D, Shyne R, et al. 2009. Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses. Environmental and Experimental Botany 66:88−93 doi: 10.1016/j.envexpbot.2008.12.002
[92] Elmi A, West C. 1995. Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytologist 131:61−7 doi: 10.1111/j.1469-8137.1995.tb03055.x
[93] Buck GW, West CP, Elbersen HW. 1997. Endophyte effect on drought tolerance in diverse Festuca species. Neotyphodium/Grass Interactions, eds. Bacon CW, Hill NS. Boston, MA: Springer. pp 141−43.
[94] Elmi A, West C, Robbins R, Kirkpatrick T. 2000. Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass and Forage Science 55:166−72 doi: 10.1046/j.1365-2494.2000.00210.x
[95] Hosseini F, Mosaddeghi M, Hajabbasi MA, Sabzalian M. 2016. Role of fungal endophyte of tall fescue (Epichloë coenophiala) on water availability, wilting point and integral energy in texturally-different soils. Agricultural Water Management 163:197−211 doi: 10.1016/j.agwat.2015.09.024
[96] Xu L, Li X, Han L, Li D, Song G. 2017. Epichloe endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. European Journal of Horticultural Science 82:90−97 doi: 10.17660/eJHS.2017/82.2.4
[97] Read JC, Camp BJ. 1986. The effect of the fungal endophyte Acremonium coenophialum in tall fescue on animal performance, toxicity, and stand maintenance. Agronomy Journal 78:848−50 doi: 10.2134/agronj1986.00021962007800050021x
[98] Read JC. 1990. The effect of the fungal endophyte Acremonium coenophialum on dry matter production and summer survival of tall fescue. Proc. Proceedings of the international symposium on Acremonium/grass interactions, Baton Rou, United States of America, 1990: 181−4
[99] West CP, Izekor E, Oosterhuis DM, Robbins RT. 1988. The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant and Soil 112:3−6 doi: 10.1007/BF02181745
[100] Knox J, Karnok K. 1992. Root and shoot growth of endophyte infected and endophyte free tall fescue under water stress and non-stress conditions. Proc. Agronomy Abstracts. Madison, WI: American Society of Agronomy, 1992, 171
[101] Malinowski D, Leuchtmann A, Schmidt D, Nösberger J. 1997. Growth and water status in meadow fescue is affected by Neotyphodium and Phialophora species endophytes. Agronomy Journal 89:673−8 doi: 10.2134/agronj1997.00021962008900040021x
[102] Malinowski D, Leuchtmann A, Schmidt D, Nösberger J. 1997. Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agronomy Journal 89:833−9 doi: 10.2134/agronj1997.00021962008900050019x
[103] Malinowski D. 1995. Rhizomatous ecotypes and symbiosis with endophytes as new possibilities of improvement in competitive ability of meadow fescue (Festuca pratensis Huds.). PhD. ETH Zurich
[104] Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K. 2002. Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173−83 doi: 10.1034/j.1600-0706.2002.990118.x
[105] Tian Z, Huang B, Belanger FC. 2015. Effects of Epichloë festucae fungal endophyte infection on drought and heat stress responses of strong creeping red fescue. Journal of the American Society for Horticultural Science 140:257−64 doi: 10.21273/JASHS.140.3.257
[106] Li C, Li F, Gou X, Nan Z. 2008. Effects of abiotic stresses on Achnatherum inebrians by symbiotic endophyte of Neotyphodium gansuense. Proc. XXI International Grassland Congress/ VII International Rangeland Congress, Hohot, China, 2008: 819. Guangdong People's Publishing House
[107] Xia C, Li N, Zhang Y, Li C, Zhang X, et al. 2018. Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Disease 102:2061−73 doi: 10.1094/PDIS-05-18-0762-FE
[108] Zhang X, Li C, Nan Z. 2011. Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Biochemical Systematics and Ecology 39:471−6 doi: 10.1016/j.bse.2011.06.016
[109] Xia C, Zhang X, Christensen MJ, Nan Z, Li C. 2015. Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecology 16:26−33 doi: 10.1016/j.funeco.2015.02.003
[110] Ren A, Li X, Han R, Yin L, Wei M, et al. 2011. Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant and Soil 346:363−73 doi: 10.1007/s11104-011-0824-9
[111] Oberhofer M, Güsewell S, Leuchtmann A. 2014. Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytologist 201:242−53 doi: 10.1111/nph.12496
[112] Kannadan S, Rudgers JA. 2008. Endophyte symbiosis benefits a rare grass under low water availability. Functional Ecology 22:706−13 doi: 10.1111/j.1365-2435.2008.01395.x
[113] Morse LJ, Day TA, Faeth SH. 2002. Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environmental and Experimental Botany 48:257−68 doi: 10.1016/S0098-8472(02)00042-4
[114] Iannone LJ, Pinget AD, Nagabhyru P, Schardl CL, De Battista JP. 2012. Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass and Forage Science 67:382−90 doi: 10.1111/j.1365-2494.2012.00855.x
[115] Bu Y, Guo P, Ji Y, Zhang S, Yu H, et al. 2019. Effects of Epichloë sinica on Roegneria kamoji seedling physiology under PEG-6000 simulated drought stress. Symbiosis 77:123−32 doi: 10.1007/s13199-018-0570-3
[116] Zhang YP, Nan ZB. 2007. Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. Journal of Agronomy and Crop Science 193:377−86 doi: 10.1111/j.1439-037X.2007.00279.x
[117] Zhang YP, Nan ZB. 2010. Germination and seedling anti-oxidative enzymes of endophyte-infected populations of Elymus dahuricus under osmotic stress. Seed Science and Technology 38:522−7 doi: 10.15258/sst.2010.38.2.25
[118] Rudgers JA, Swafford AL. 2009. Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic and Applied Ecology 10:43−51 doi: 10.1016/j.baae.2007.12.004
[119] Ren A, Wei M, Yin L, Wu L, Zhou Y, et al. 2014. Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environmental and Experimental Botany 108:71−8 doi: 10.1016/j.envexpbot.2013.11.019
[120] Wang J, Zhou Y, Lin W, Li M, Wang M, et al. 2017. Effect of an Epichloë endophyte on adaptability to water stress in Festuca sinensis. Fungal Ecology 30:39−47 doi: 10.1016/j.funeco.2017.08.005
[121] Sjursen H, Bayley M, Holmstrup M. 2001. Enhanced drought tolerance of a soil-dwelling springtail by pre-acclimation to a mild drought stress. Journal of Insect Physiology 47:1021−7 doi: 10.1016/S0022-1910(01)00078-6
[122] Premachandra GS, Hahn DT, Rhodes D, Joly RJ. 1995. Leaf water relations and solute accumulation in two grain sorghum lines exhibiting contrasting drought tolerance. Journal of Experimental Botany 46:1833−41 doi: 10.1093/jxb/46.12.1833
[123] Huberty AF, Denno RF. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383−98 doi: 10.1890/03-0352
[124] Isaacs R, Byrne DN, Hendrix DL. 1998. Feeding rates and carbohydrate metabolism by Bemisia tabaci (Homoptera: Aleyrodidae) on different quality phloem saps. Physiological Entomology 23:241−8 doi: 10.1046/j.1365-3032.1998.233080.x
[125] Mattson WJ, Haack RA. 1987. The role of drought in outbreaks of plant-eating insects. BioScience 37:110−8 doi: 10.2307/1310365
[126] Mattson WJ Jr. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11:119−61 doi: 10.1146/annurev.es.11.110180.001003
[127] White JF Jr, Crawford H, Torres MS, Mattera R, Irizarry I, et al. 2012. A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis 57:161−71 doi: 10.1007/s13199-012-0189-8
[128] Brodbeck B, Strong D. 1987. Amino acid nutrition of herbivorous insects and stress to host plants. In Insect Outbreaks: ecological and evolutionary perspectives, eds. Barbosa P, Schultz JC. New York, USA: Academic Press. pp 347−64 https://doi.org/10.1016/B978-0-12-078148-5.50018-X
[129] Mattson WJ, Haack RA. 1987. The role of drought stress in provoking outbreaks of phytophagous insects. In Insect Outbreaks, eds. Barbosa P, Schultz JC. New York, USA: Academic Press. pp 365−407 https://doi.org/10.1016/B978-0-12-078148-5.50019-1
[130] White TCR. 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 50:905−9 doi: 10.2307/1933707
[131] Larsson S. 1989. Stressful times for the plant stress: insect performance hypothesis. Oikos 56:277−83 doi: 10.2307/3565348
[132] Goldson SL, Frampton ER, Jamieson PD. 1986. Relationship of Sitona discoideus (Coleoptera: Curculionidae) larval density to September-October potential soil moisture deficits. New Zealand Journal of Agricultural Research 29:275−9 doi: 10.1080/00288233.1986.10426983
[133] Rani PU, Kanuparthi P. 2014. Water stress induced physiological and biochemical changes in Piper betle L. and Ricinus communis L. plants and their effects on Spodoptera litura. Allelopathy Journal 33:25−41
[134] Kindler D, Hesler L, Elliott N, Royer T, Giles K. 2004. Seasonal abundance of rice root aphid in wheat and its effect on forage and grain yields. Southwestern Entomologist 29:245−52
[135] Al-Antary TM, Akkawi M. 1987. The occurrence, economic importance and control of wheat root aphid (Alponeura lentisci Passerini, Homoptera, Aphididae) on wheat in Jordan. Dirasat 2:83−8
[136] Pretorius RJ, Hein GL, Bradshaw JD. 2016. Ecology and management of Pemphigus betae (Hemiptera: Aphididae) in sugar beet. Journal of Integrated Pest Management 7:10 doi: 10.1093/jipm/pmw008
[137] Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. The quarterly review of biology 67:283−335 doi: 10.1086/417659
[138] Miranda MI, Omacini M, Chaneton EJ. 2011. Environmental context of endophyte symbioses: Interacting effects of water stress and insect herbivory. International Journal of Plant Sciences 172:499−508 doi: 10.1086/658921
[139] Popay AJ, Hume DE. 2011. Endophytes improve ryegrass persistence by controlling insects. Proc. Pasture Persistence Symposium, Dunedin, New Zealand, 2011, 15: 149-56. New Zealand Grassland Association https://doi.org/10.33584/rps.15.2011.3196
[140] Popay AJ, Hume DE, Mace WJ, Faville MJ, Finch SC, et al. 2021. A root aphid, Aploneura lentisci is affected by Epichloë endophyte strain and impacts perennial ryegrass growth in the field. Crop and Pasture Science 72:155−64 doi: 10.1071/CP20299
[141] Bultman TL, Bell GD. 2003. Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos 103:182−90 doi: 10.1034/j.1600-0706.2003.11574.x
[142] Popay AJ, Jensen JG, Mace WJ. 2020. Root herbivory: grass species, Epichloë endophytes and moisture status make a difference. Microorganisms 8:997 doi: 10.3390/microorganisms8070997
[143] Saona NM, Albrectsen BR, Ericson L, Bazely DR. 2010. Environmental stresses mediate endophyte-grass interactions in a boreal archipelago. Journal of Ecology 98:470−9 doi: 10.1111/j.1365-2745.2009.01613.x
[144] Bazely DR, Vicari M, Emmerich S, Filip L, Lin D, et al. 1997. Interactions between herbivores and endophyte-infected Festuca rubra from the Scottish islands of St. Kilda, Benbecula and Rum. The Journal of Applied Ecology 34:847−60 doi: 10.2307/2405276
[145] Rodriguez RJ, White JF Jr, Arnold AE, Redman RS. 2009. Fungal endophytes: Diversity and functional roles: Tansley review. New Phytologist 182:314−30 doi: 10.1111/j.1469-8137.2009.02773.x
[146] Hume DE, Popay AJ, Cooper BM, Eerens JPJ, Lyons TB, et al. 2004. Effect of a novel endophyte on the productivity of perennial ryegrass (Lolium perenne) in New Zealand. Proceeding 5th International Symposium on Neotyphodium/ Grass Interactions, Fayetteville, Arkansas, United States of America, 2004: Poster 313
[147] Hume DE, Ryan DL, Cooper BM, Popay AJ. 2007. Agronomic performance of AR37-infected ryegrass in northern New Zealand. Proceeding New Zealand Grassland Association, Wairakei, New Zealand, 2007, 69: 201−5. Wairakei: New Zealand Grassland Association https://doi.org/10.33584/jnzg.2007.69.2673
[148] Fletcher L, Lane G, Baird D, Davies E. 2001. Seasonal variations of alkaloid concentrations in two perennial ryegrass-endophyte associations. Proc. 4th International Neotyphodium/ Grass Interactions Symposium, Universität-Gesamthochschule Paderborn, Soest, Germany, 2001: 535−41
[149] Fuchs B, Krischke M, Mueller MJ, Krauss J. 2017. Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecology 29:52−8 doi: 10.1016/j.funeco.2017.06.003
[150] Popay AJ, Thom ER. 2009. Endophyte effects on major insect pests in Waikato dairy pasture. Proceeding Pasture Persistence Symposium, Hamilton, New Zealand, 2009, 71: 121−6. Dunedin, New Zealand: New Zealand Grassland Association. https://doi.org/10.33584/jnzg.2009.71.2758
[151] Francis SM, Baird DB. 1989. Increase in the proportion of endophyte-infected perennial ryegrass plants in overdrilled pastures. New Zealand Journal of Agricultural Research 32:437−40 doi: 10.1080/00288233.1989.10421764
[152] Shymanovich T, Faeth SH. 2019. Environmental factors affect the distribution of two Epichloë fungal endophyte species inhabiting a common host grove bluegrass (Poa alsodes). Ecol. Evol. 9:6624−42 doi: 10.1002/ece3.5241
[153] Caradus J, Chapman D, Cookson T, Cotching B, Deighton M, et al. 2021. Epichloë endophytes–new perspectives on a key ingredient for resilient perennial grass pastures. Proc. Pasture Resilience Symposium, Hamilton, New Zealand, 2021, 17: 57−70. New Zealand Grassalands Associaton. https://doi.org/10.33584/rps.17.2021.3435
[154] Börschig C, Klein AM, Krauss J. 2014. Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions. Journal of Plant Ecology 7:490−8 doi: 10.1093/jpe/rtt047