[1]

Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261:201−17

doi: 10.11646/phytotaxa.261.3.1
[2]

Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, et al. 2015. An updated classification of Orchidaceae. Botanical Journal of the Linnean Society 177:151−74

doi: 10.1111/boj.12234
[3]

Liu Z, Chen S, Ru Z. 2006. The genus Cymbidium in China. Beijing, China: Science Press. pp. 1−342

[4]

Du Puy D, Cribb P. 1988. The genus Cymbidium. London and Portland, Oregon: Christopher Helm and Timber Press. pp. 1−236

[5]

Yang J, Tang M, Li H, Zhang Z, Li D. 2013. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evolutionary Biology 13:84

doi: 10.1186/1471-2148-13-84
[6]

Long Y, Fu H, Su JJ. 2000. A study on karyotype of Cymbidium goeringii. Journal of Sichuan University 37:3−6

[7]

McGrath CL, Lynch M. 2012. Evolutionary significance of whole-genome duplication. In: Poly-ploidy and Genome Evolution, eds. Soltis PS, Soltis DE. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 1–20 https://doi.org/10.1007/978-3-642-31442-1_1

[8]

Zhang G, Liu K, Li Z, Lohaus R, Hsiao YY, et al. 2017. The Apostasia genome and the evolution of orchids. Nature 549:379−83

doi: 10.1038/nature23897
[9]

Yuan Y, Jin X, Liu J, Zhao X, Zhou J, et al. 2018. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nature Communications 9:1615

doi: 10.1038/s41467-018-03423-5
[10]

Zhang G, Xu Q, Bian C, Tsai WC, Yeh CM, et al. 2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports 6:19029

doi: 10.1038/srep19029
[11]

Cai J, Liu X, Vanneste K, Proost S, Tsai WC, et al. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics 47:65−72

doi: 10.1038/ng.3149
[12]

Ai Y, Li Z, Sun WH, Chen J, Zhang D, et al. 2021. The Cymbidium genome reveals the evolution of unique morphological traits. Horticulture Research In Press

[13]

Yang FX, Gao J, Wei YL, Ren R, Zhang GQ, et al. 2021. The genome of Cymbidium sinense revealed the evolution of orchid traits. Plant Biotechnology Journal

doi: 10.1111/pbi.13676
[14]

Mondragón-Palomino M, Theißen G. 2008. MADS about the evolution of orchid flowers. Trends in Plant Science 13:51−59

doi: 10.1016/j.tplants.2007.11.007
[15]

Mondragón-Palomino M, Theißen G. 2009. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes Annals of Botany 104:583−94

doi: 10.1093/aob/mcn258
[16]

Pan, ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, et al. 2011. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant and Cell Physiology 52:1515−31

doi: 10.1093/pcp/pcr092
[17]

Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, et al. 2000. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. The Plant Journal 21:351−60

doi: 10.1046/j.1365-313x.2000.00682.x
[18]

Lu H, Liu Z, Lan S. 2019. Genome sequencing reveals the role of MADS-box gene families in the floral morphology evolution of orchids. Horticultural Plant Journal 5:247−54

doi: 10.1016/j.hpj.2019.11.005
[19]

Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, et al. 2016. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics 48:657−66

doi: 10.1038/ng.3565
[20]

Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57:761−780

doi: 10.1146/annurev.arplant.57.032905.105248
[21]

Veitch NC, Grayer RJ. 2008. Flavonoids and their glycosides, including anthocyanins. Natural Product Reports 25:555−611

doi: 10.1039/b718040n
[22]

Tanaka Y, Brugliera F, Chandler S. 2009. Recent progress of flower colour modification by biotechnology. International Journal of Molecular Sciences 10:5350−69

doi: 10.3390/ijms10125350
[23]

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81

doi: 10.1016/j.tplants.2010.06.005
[24]

Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH. 2015. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiology 168:175−91

doi: 10.1104/pp.114.254599
[25]

Ramya M, Park PH, Chuang YC, Kwon OK, An HR, et al. 2019. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes. BMC Plant Biology 19:337

doi: 10.1186/s12870-019-1940-6
[26]

Chen Y, Li Z, Zhao Y, Gao M, Wang J, et al. 2020. The Litsea genome and the evolution of the laurel family. Nature Communications 11:1675

doi: 10.1038/s41467-020-15493-5
[27]

Zhu G, Yang F, Shi S, Li D, Wang Z, et al. 2015. Transcriptome characterization of Cymbidium sinense 'Dharma' using 454 pyrosequencing and its application in the identification of genes associated with leaf color variation. PLoS ONE 10:e0128592

doi: 10.1371/journal.pone.0128592
[28]

Tsai CC, Wu YJ, Sheue CR, Liao PC, Chen YH, et al. 2017. Molecular basis underlying leaf variegation of a moth orchid mutant (Phalaenopsis aphrodite subsp. formosana). Frontiers in Plant Science 8:1333

doi: 10.3389/fpls.2017.01333
[29]

Gao J, Ren R, Wei Y, Jin J, Ahmad S, et al. 2020. Comparative metabolomic analysis reveals distinct flavonoid biosynthesis regulation for leaf color development of Cymbidium sinense 'red sun'. International Journal of Molecular Sciences 21:1869

doi: 10.3390/ijms21051869
[30]

Han G. 2019. Origin and evolution of the plant immune system. New Phytologist 222:70−83

doi: 10.1111/nph.15596
[31]

Shao Z, Xue J, Wu P, Zhang Y, Wu Y et al. 2016. Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiology 170:2095−109

doi: 10.1104/pp.15.01487
[32]

Xue J, Zhao T, Liu Y, Liu Y, Zhang Y, et al. 2020. Genome-wide analysis of the nucleotide binding site Leucine-rich repeat genes of four orchids revealed extremely low numbers of disease resistance genes. Frontiers in Genetics 10:1286

doi: 10.3389/fgene.2019.01286
[33]

Lindquist S, Craig EA. 1988. The heat-shock proteins. Annual Review Of Genetics 22:631−77

doi: 10.1146/annurev.ge.22.120188.003215
[34]

Sung DY, Vierling E, Guy CL. 2001. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiology 126:789−800

doi: 10.1104/pp.126.2.789
[35]

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11−15

[36]

Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods 13:1050−54

doi: 10.1038/nmeth.4035
[37]

Jue R. 2016. Ultra-fast de novo assembler using long noisy reads. Available at https://github.com/ruanjue/smartdenovo (March 2016, date last accessed).

[38]

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963

doi: 10.1371/journal.pone.0112963
[39]

Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764−770

doi: 10.1093/bioinformatics/btr011
[40]

Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, et al. 2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33:2202−4

doi: 10.1093/bioinformatics/btx153
[41]

Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems 3:95−98

doi: 10.1016/j.cels.2016.07.002
[42]

Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92−95

doi: 10.1126/science.aal3327
[43]

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12

doi: 10.1093/bioinformatics/btv351
[44]

Smit AFA. 2004. Repeat-Masker Open-3.0. http://www. repeatmasker.org

[45]

Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, et al. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110:462−67

doi: 10.1159/000084979
[46]

Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research 35:W265−W268

doi: 10.1093/nar/gkm286
[47]

Edgar RC, Myers EW. 2005. PILER: identification and classification of genomic repeats. Bioinformatics 21:i152−i158

doi: 10.1093/bioinformatics/bti1003
[48]

Price AL, Jones NC, Pevzner PA. 2005. De novo identification of repeat families in large genomes. Bioinformatics 21:351−i358

doi: 10.1093/bioinformatics/bti1018
[49]

Birney E, Clamp M, Durbin R. 2004. GeneWise and Genomewise. Genome Research 14:988−95

doi: 10.1101/gr.1865504
[50]

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34:W435−W439

doi: 10.1093/nar/gkl200
[51]

Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, et al. 2008. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938−39

doi: 10.1093/bioinformatics/btn564
[52]

Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12:491

doi: 10.1186/1471-2105-12-491
[53]

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics 25:25−29

doi: 10.1038/75556
[54]

Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28:27−30

doi: 10.1093/nar/28.1.27
[55]

Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, et al. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology 5:R7

doi: 10.1186/gb-2004-5-2-r7
[56]

Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. 2009. InterPro: the integrative protein signature database. Nucleic Acids Research 37:D211−215

doi: 10.1093/nar/gkn785
[57]

Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, et al. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31:365−70

doi: 10.1093/nar/gkg095
[58]

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, et al. 2005. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33:D121−D124

doi: 10.1093/nar/gki081
[59]

Lowe TM, Eddy SR. 1997. TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25:955−64

doi: 10.1093/nar/25.5.955
[60]

Fischer S, Brunk BP, Chen F, Gao X, Harb OS, et al. 2011. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Current Protocols in Bioinformatics 35:6.12.1−6.12.19

doi: 10.1002/0471250953.bi0612s35
[61]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−97

doi: 10.1093/nar/gkh340
[62]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972−73

doi: 10.1093/bioinformatics/btp348
[63]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[64]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91

doi: 10.1093/molbev/msm088
[65]

Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, et al. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763−68

doi: 10.1038/nature08747
[66]

Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev IU, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596−604

doi: 10.1126/science.1128691
[67]

Chaw SM, Chang CC, Chen HL, Li WH. 2004. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. Journal of Molecular Evolution 58:424−41

doi: 10.1007/s00239-003-2564-9
[68]

Magallón S, Hilu KW, Quandt D. 2013. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. American Journal of Botany 100:556−73

doi: 10.3732/ajb.1200416
[69]

De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22:1269−71

doi: 10.1093/bioinformatics/btl097
[70]

Tang H, Krishnakumar V, Li JP. 2015. JCVI: JCVI Utility Libraries. https://github.com/tanghaibao/jcvi

[71]

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60

doi: 10.1038/nmeth.3176
[72]

Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13:555−56

doi: 10.1093/bioinformatics/13.5.555
[73]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[74]

Chen F, Tholl D, Bohlmann J, Pichersky E. 2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66:212−29

doi: 10.1111/j.1365-313X.2011.04520.x
[75]

Zhang Y, Zhang G, Zhang D, Liu X, Xu X, et al. 2021. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. Horticulture Research 8:183

doi: 10.1038/s41438-021-00621-z
[76]

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Research 43:D222−D226

doi: 10.1093/nar/gku1221
[77]

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731−2739

doi: 10.1093/molbev/msr121