[1] |
Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS. 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience 1:767−70 doi: 10.1038/ngeo339
|
[2] |
Caputo J, Beier CM, Sullivan TJ, Lawrence GB. 2016. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA). Science of The Total Environment 565:401−11 doi: 10.1016/j.scitotenv.2016.04.008
|
[3] |
Bolan NS, Adriano DC, Curtin D. 2003. Soil acidification and liming interactions with nutrientand heavy metal transformation and bioavailability. In Advances in Agronomy, ed. Sparks DL, 78:279. Amsterdam: Academic Press, Elsevier. pp. 215−72 https://doi.org/10.1016/S0065-2113(02)78006-1
|
[4] |
Fageria NK, Nascente AS. 2014. Management of soil acidity of South American soils for sustainable srop production. In Advances in Agronomy, ed. Sparks DL, 128:284. Amsterdam: Academic Press, Elsevier. pp. 221−75 https://doi.org/10.1016/b978-0-12-802139-2.00006-8
|
[5] |
Kunhikrishnan A, Thangarajan R, Bolan NS, Xu Y, Mandal S, et al. 2016. Functional relationships of soil acidification, liming, and greenhouse gas flux. In Advances in Agronomy, ed. Sparks DL, 139:276. Amsterdam: Academic Press, Elsevier. pp. 1−71 https://doi.org/10.1016/bs.agron.2016.05.001
|
[6] |
Holland JE, Bennett AE, Newton AC, White PJ, Mckenzie BM, et al. 2018. Liming impacts on soils, crops and biodiversity in the UK: a review. Science of The Total Environment 610−611:316−32 doi: 10.1016/j.scitotenv.2017.08.020
|
[7] |
Li GD, Conyers MK, Helyar KR, Lisle CJ, Poile GJ, et al. 2019. Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia. Geoderma 338:236−46 doi: 10.1016/j.geoderma.2018.12.003
|
[8] |
Duan X, Hu X, Deng Z, Chen F. 2012. The effects of Calcium addition on uptake and accumulation of Calcium, Aluminum and partial mineral nutrition of tea plants under Aluminum stress. Journal of Jiangxi Normal University (Natural Science Edition) 36:322−25
|
[9] |
Yi J, Lu L, Liu G. 2006. Research on soil acidification and acidic soil's Melioration. Journal of South China University of Tropical Agriculture 12:23−28
|
[10] |
Zhang B, Ding Y. 2017. Combined use of biochar and limestone to ameliorate soil acidity in Lu Shan Mist Tea Garden soil. Journal of Nanchang Hangkong University (Natural Sciences) 30:99−103
|
[11] |
Shen J, Hu J. 2014. Variation of biochemical components in different tea varieties under excessive calcium treatment. Shandong Agricultural Sciences 46:74−76
|
[12] |
Yao Y, Song L, Tian L. 2011. Advances in research on calcium nutrition of tea. Deciduous Fruits 3:37−39 doi: 10.13855/j.cnki.lygs.2011.02.003
|
[13] |
Wu X. 1997. Tea garden soil management and fertilization technology. Golden Shield Press, Beijing, China (in Chinese)
|
[14] |
Wang Y, Zhang L, Sun Q. 2010. Effects of excessive calcium fertilization on photosynthetic characteristics and chloroplast ultra-structure of tea tree. Journal of Plant Nutrition and Fertilizers 16:432−38
|
[15] |
Bhat JA, Kundu MC, Hazra GC, Santra GH, and Mandal B. 2010. Rehabilitating acid soils for increasing crop productivity through low-cost liming material. Science of The Total Environment 408:4346−53 doi: 10.1016/j.scitotenv.2010.07.011
|
[16] |
Tiritan CS, Büll LT, Crusciol CAC, Carmeis Filho ACA, Fernandes DM, et al. 2016. Tillage system and lime application in a tropical region: Soil chemical fertility and corn yield in succession to degraded pastures. Soil andTillage Research 155:437−47 doi: 10.1016/j.still.2015.06.012
|
[17] |
Rheinheimer DS, Tiecher T, Gonzatto R, Zafar M, Brunetto G. 2018. Residual effect of surface-applied lime on soil acidity properties in a long-term experiment under no-till in a Southern Brazilian sandy Ultisol. Geoderma 313:7−16 doi: 10.1016/j.geoderma.2017.10.024
|
[18] |
Schaberg PG, Tilley JW, Hawley GJ, DeHayes DH, Bailey SW. 2006. Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. Forest Ecology and Management 223:159−69 doi: 10.1016/j.foreco.2005.10.067
|
[19] |
Meharg A. 2012. Marschner's Mineral Nutrition of Higher Plants. In Experimental Agriculture, ed. Marschner P. 48 (3rd edition):684. Amsterdam, Netherlands: Elsevier/Academic Press. pp. 305 https://doi.org/10.1007/s00299-019-02401-5
|
[20] |
Ruan J, Wong MH. 2004. Aluminium absorption by intact roots of the Al-accumulating plant Camellia sinensis L. Agronomie 24:137−42 doi: 10.1051/agro:2004012
|
[21] |
Ghanati F, Morita A, Yokota H. 2005. Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant and Soil 276:133−41 doi: 10.1007/s11104-005-3697-y
|
[22] |
Fan K, Wang M, Gao Y, Ning Q, Shi Y. 2019. Transcriptomic and ionomic analysis provides new insight into the beneficial effect of Al on tea roots' growth and nutrient uptake. Plant Cell Reports 38:715−29 doi: 10.1007/s00299-019-02401-5
|
[23] |
Zheng W, Liu P, Xu G, Xie Z, Luo H. 2006. Effect of aluminum on quality of tea plant. Ecology and Environment 15:822−26 doi: 10.16258/j.cnki.1674-5906.2006.04.033
|
[24] |
Zheng G, Chen S, Shu P, Li D. 2013. Research progress of main chemical components of tea affected by aluminum. Tea Science and Technology 3:1−5 doi: 10.3969/j.issn.1007-4872.2013.03.001
|
[25] |
Cole JC, Smith MW, Penn CJ, Cheary BS, Conaghan KJ. 2016. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae 211:420−430 doi: 10.1016/j.scienta.2016.09.028
|
[26] |
Rhodes R, Miles N, Hughes JC. 2018. Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research 223:1−11 doi: 10.1016/j.fcr.2018.01.001
|
[27] |
Jiang Z, Huete AR, Chen J, Chen Y, Li J, et al. 2006. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment 101:366−78 doi: 10.1016/j.rse.2006.01.003
|
[28] |
Broge NH, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment 76:156−72 doi: 10.1016/S0034-4257(00)00197-8
|
[29] |
Fageria NK, Baligar VC. 2008. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. In Advances in Agronomy, ed. Sparks DL, 99:407, Amsterdam: Academic Press, Elsevier. pp. 345−99 https://doi.org/10.1016/S0065-2113(08)00407-0
|
[30] |
Santos DR, Tiecher T, Gonzatto R, Santanna MA, Brunetto G, et al. 2018. Long-term effect of surface and incorporated liming in the conversion of natural grassland to no-till system for grain production in a highly acidic sandy-loam Ultisol from South Brazilian Campos. Soil and Tillage Research 180:222−31 doi: 10.1016/j.still.2018.03.014
|
[31] |
Grusak MA. 2001. Plant Macro- and Micronutrient Minerals. eLS doi: 10.1038/npg.els.0001306
|
[32] |
Yao Y, Zhang L, Wang R, Mi PP, Wang J. 2009. Nutritional diagnosis for the pathogenesis of fluorescence green spot disease of tea plant. Journal of Tea Science 29:144−53
|
[33] |
Wu X. 1994. Calcium and magnesium nutritions for tea p1ants and their soil controls. Journal of Tea Science 14:115−21
|
[34] |
Tang C, Rengel Z, Diatloff E, Gazey C. 2003. Responses of wheat and barley to liming on a sandy soil with subsoil acidity. Field Crops Research 80:235−44 doi: 10.1016/S0378-4290(02)00192-2
|
[35] |
Saarsalmi A, Tamminen P, Kukkola M, Levula T. 2011. Effects of liming on chemical properties of soil, needle nutrients and growth of Scots pine transplants. Forest Ecology and Management 262:278−85 doi: 10.1016/j.foreco.2011.03.033
|
[36] |
Vieira Fontoura SM, de Castro Pias OH, Tiecher T, Cherubin MR, de Moraes RP, et al. 2019. Effect of gypsum rates and lime with different reactivity on soil acidity and crop grain yields in a subtropical Oxisol under no-tillage. Soil and Tillage Research 193:27−41 doi: 10.1016/j.still.2019.05.005
|
[37] |
Hamilton EJ, Miles RJ, Lukaszewska K, Remley M, Massie M, et al. 2012. Liming of two acidic soils improved grass tetany ratio of stockpiled tall fescue without increasing plant available phosphorus. Journal of Plant Nutrition 35:497−510 doi: 10.1080/01904167.2012.631673
|
[38] |
Bailey, Laidlaw. 1999. The interactive effects of phosphorus, potassium, lime and molybdenum on the growth and morphology of white clover (Trifolium repens L.) at establishment. Grass and Forage Science 54:69−76 doi: 10.1046/j.1365-2494.1999.00159.x
|
[39] |
Holland JE, White PJ, Glendining MJ, Goulding KWT, Mcgrath SP. 2019. Yield responses of arable crops to liming – An evaluation of relationships between yields and soil pH from a long-term liming experiment. European Journal of Agronomy 105:176−88 doi: 10.1016/j.eja.2019.02.016
|
[40] |
Donaldson RA, Meyer JH, Wood RA. 1990. Response to potassium by sugarcane grown on base saturated clay soils in the Eastern Transvaal Lowland. Proceedings of the Annual Congress of South African Sugar Technologists Association. 64:17−21.
|
[41] |
Mukhopadyay M, Bantawa P, Das A, Sarkar B, Bera B, et al. 2015. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. Biometals 25:1141−54 doi: 10.1007/s10534-012-9576-0
|
[42] |
Seguel A, Cumming J, Cornejo P, Borie F. 2016. Aluminum tolerance of wheat cultivars and relation to arbuscular mycorrhizal colonization in a non-limed and limed Andisol. Applied Soil Ecology 108:228−37 doi: 10.1016/j.apsoil.2016.08.014
|