[1] |
Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, et al. 2003. Microbial diversity and soil functions. European Journal of Soil Science 54:655−70 doi: 10.1046/J.1351-0754.2003.0556.X
|
[2] |
Basu S, Kumar G, Chhabra S, Prasad R. 2021. Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In New and Future Developments in Microbial Biotechnology and Bioengineering, eds. Verma JP, Macdonald CA, Gupta VK, Appa Rao P. pp. 149−57 https://doi.org/10.1016/B978-0-444-64325-4.00013-4
|
[3] |
Singh A, Agrawal M, Marshall FM. 2010. The role of organic vs. inorganic fertilizers in reducing phytoavailability of heavy metals in a wastewater-irrigated area. Ecological Engineering 36:1733−40 doi: 10.1016/J.ECOLENG.2010.07.021
|
[4] |
Finlay RD. 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany 59:1115−26 doi: 10.1093/jxb/ern059
|
[5] |
Pioli S, Sarneel J, Thomas HJD, Domene X, Andrés P,et al. 2020. Linking plant litter microbial diversity to microhabitat conditions, environmental gradients and litter mass loss: Insights from a European study using standard litter bags. Soil Biology and Biochemistry 144:107778 doi: 10.1016/J.SOILBIO.2020.107778
|
[6] |
Garbeva P, van Veen JA, van Elsas JD. 2004. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology 42:243−70 doi: 10.1146/annurev.phyto.42.012604.135455
|
[7] |
Zinger L, Gobet A, Pommier T. 2012. Two decades of describing the unseen majority of aquatic microbial diversity. Molecular Ecology 21:1878−96 doi: 10.1111/J.1365-294X.2011.05362.X
|
[8] |
Husband R, Herre EA, Turner SL, Gallery R, Young JPW. 2002. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology 11:2669−78 doi: 10.1046/J.1365-294X.2002.01647.X
|
[9] |
Ludley KE, Robinson CH, Jickells S, Chamberlain PM, Whitaker J. 2008. Differential response of ectomycorrhizal and saprotrophic fungal mycelium from coniferous forest soils to selected monoterpenes. Soil Biology and Biochemistry 40:669−78 doi: 10.1016/J.SOILBIO.2007.10.001
|
[10] |
Rodríguez-Iturbe I, D'Odorico P, Porporato A, Ridolfi L. 1999. Tree-grass coexistence in Savannas: The role of spatial dynamics and climate fluctuations. Geophysical Research Letters 26:247−50 doi: 10.1029/1998GL900296
|
[11] |
Berthrong ST, Jobbágy EG, Jackson RB. 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications 19:2228−41 doi: 10.1890/08-1730.1
|
[12] |
Thomson BC, Ostle NJ, McNamara NP, Whiteley AS, Griffiths RI. 2010. Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates. Journal of Microbiological Methods 83:69−73 doi: 10.1016/J.MIMET.2010.07.021
|
[13] |
Shamir I, Steinberger Y. 2007. Vertical distribution and activity of soil microbial population in a sandy desert ecosystem. Microbial Ecology 53:340−47 doi: 10.1007/S00248-006-9137-6
|
[14] |
Jumpponen A, Herrera J, Porras-Alfaro A, Rudgers J. 2017. Biogeography of Root-Associated Fungal Endophytes. In Biogeography of Mycorrhizal Symbiosis, ed. Tedersoo L. Switzerland:Springer. pp. 195-222 https://doi.org/10.1007/978-3-319-56363-3_10
|
[15] |
Ni X, Liao S, Tan S, Peng Y, Wang D, et al. 2020. The vertical distribution and control of microbial necromass carbon in forest soils. Global Ecology and Biogeography 29:1829−39 doi: 10.1111/GEB.13159
|
[16] |
Kang E, Li Y, Zhang X, Yan Z, Wu H, et al. 2021. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Science of the Total Environment 774:145780 doi: 10.1016/J.SCITOTENV.2021.145780
|
[17] |
López-Aizpún M, Arango-Mora C, Santamaría C, Lasheras E, Santamaría JM, et al. 2018. Atmospheric ammonia concentration modulates soil enzyme and microbial activity in an oak forest affecting soil microbial biomass. Soil Biology and Biochemistry 116:378−87 doi: 10.1016/j.soilbio.2017.10.020
|
[18] |
Zhu J, Zhang J, Liu H, Cao K. 2009. Photosynthesis, non-photochemical pathways and activities of antioxidant enzymes in a resilient evergreen oak under different climatic conditions from a valley-savanna in Southwest China. Physiologia Plantarum 135:62−72 doi: 10.1111/J.1399-3054.2008.01171.X
|
[19] |
Dangi S, Gao S, Duan Y, Wang D. 2020. Soil microbial community structure affected by biochar and fertilizer sources. Applied Soil Ecology 150:103452 doi: 10.1016/J.APSOIL.2019.103452
|
[20] |
Meyers MS, Foran DR. 2008. Spatial and Temporal Influences on Bacterial Profiling of Forensic Soil Samples. Journal of Forensic Sciences 53:652−60 doi: 10.1111/J.1556-4029.2008.00728.X
|
[21] |
Zhang Z, Shen R, Zhang J, et al. 2016. Comparisons of species composition between soil seed banks and aboveground plant communities in the dry-hot valley of the Yuanjiang River. Biodiversity Science 24:431−39 doi: 10.17520/BIODS.2015253
|
[22] |
Yi Z, Shi L, Chen A, Cao K, Zou X. 2021. Soil fungal communities along the vegetation gradient in hot-dry valley of Yuanjiang, Yunnan Province. Chinese Agricultural Science Bulletin 27:89−93
|
[23] |
Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59:695−700 doi: 10.1128/AEM.59.3.695-700.1993
|
[24] |
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72:5069−72 doi: 10.1128/AEM.03006-05
|
[25] |
Hugenholtz P, Huber T. 2003. Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. International Journal of Systematic and Evolutionary Microbiology 53:289−93 doi: 10.1099/IJS.0.02441-0
|
[26] |
Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59:143−69 doi: 10.1128/MR.59.1.143-169.1995
|
[27] |
Vainio EJ, Hantula J. 2000. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycological Research 104:927−36 doi: 10.1017/S0953756200002471
|
[28] |
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. In PCR Protocols, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. California: Academic Press. pp. 315−22 https://doi.org/10.1016/b978-0-12-372180-8.50042-1
|
[29] |
Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71:8228−35 doi: 10.1128/AEM.71.12.8228-8235.2005
|
[30] |
Dixon P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14:927−30 doi: 10.1111/J.1654-1103.2003.TB02228.X
|
[31] |
Bargali K, Manral V, Padalia K, Bargali SS, Upadhyay VP. 2018. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. CATENA 171:125−35 doi: 10.1016/J.CATENA.2018.07.001
|
[32] |
Wallenstein MD, McMahon S, Schimel J. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology 59:428−35 doi: 10.1111/J.1574-6941.2006.00260.X
|
[33] |
Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA. 2007. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environmental Microbiology 9:2670−82 doi: 10.1111/J.1462-2920.2007.01379.X
|
[34] |
Ma B, Dai Z, Wang H, Dsouza M, Liu X, et al. 2017. Distinct Biogeographic Patterns for Archaea, Bacteria, and Fungi along the Vegetation Gradient at the Continental Scale in Eastern China. mSystems 2:e00174-16 doi: 10.1128/MSYSTEMS.00174-16
|
[35] |
Manier DJ, Thompson Hobbs N. 2006. Large herbivores influence the composition and diversity of shrub-steppe communities in the Rocky Mountains, USA. Oecologia 146:641−51 doi: 10.1007/S00442-005-0065-9
|
[36] |
Fierer N, Schimel JP, Holden PA. 2003. Influence of drying–rewetting frequency on soil bacterial community structure. Microbial Ecology 45:63−71 doi: 10.1007/S00248-002-1007-2
|
[37] |
Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, et al. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist 173:611−20 doi: 10.1111/J.1469-8137.2006.01936.X
|
[38] |
Chan OC, Yang X, Fu Y, et al. 2006. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiology Ecology 58:247−59 doi: 10.1111/j.1574-6941.2006.00156.x
|
[39] |
Lu L, Tang Y, Xie J, Yuan Y. 2009. The role of marginal agricultural land-based mulberry planting in biomass energy production. Renewable Energy 34:1789−94 doi: 10.1016/j.renene.2008.12.017
|
[40] |
Kielak A, Pijl AS, van Veen JA, Kowalchuk GA. 2008. Phylogenetic diversity of Acidobacteria in a former agricultural soil. The ISME Journal 3:378−82 doi: 10.1038/ismej.2008.113
|
[41] |
Zhang Y, Wang X, Qin S. 2013. Carbon stocks and dynamics in the Three-North Protection Forest Program, China. Austrian Journal of Forest Science 130:25−43
|