[1] Collias D, Beisel CL. 2021. CRISPR technologies and the search for the PAM-free nuclease. Nature Communications 22; 12:555 doi: 10.1038/s41467-020-20633-y
[2] Zhang Y, Showalter AM. 2020. CRISPR/Cas9 genome editing technology: a valuable tool for understanding plant cell wall biosynthesis and function. Frontiers in Plant Science 11:589517 doi: 10.3389/fpls.2020.589517
[3] Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331−38 doi: 10.1038/nature10886
[4] Mishra R, Joshi RK, Zhao K. 2018. Genome editing in rice: recent advances, challenges, and future implications. Frontiers in Plant Science 9:1361 doi: 10.3389/fpls.2018.01361
[5] Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, et al. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8:2281−308 doi: 10.1038/nprot.2013.143
[6] Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31:233−39 doi: 10.1038/nbt.2508
[7] Gurumurthy CB, Grati M, Ohtsuka M, Schilit SLP, Quadros RM, et al. 2016. CRISPR: a versatile tool for both forward and reverse genetics research. Human Genetics 135:971−76 doi: 10.1007/s00439-016-1704-4
[8] Li X, Wang Y, Chen S, Tian H, Fu D, et al. 2018. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science 9:559 doi: 10.3389/fpls.2018.00559
[9] Makarova SS, Khromov AV, Spechenkova NA, Taliansky ME, Kalinina NO. 2018. Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants. Biochemistry (Moscow) 83:1552−62 doi: 10.1134/S0006297918120131
[10] Wang C, Liu Q, Shen Y, Hua Y, Wang J, et al. 2019. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology 37:283−86 doi: 10.1038/s41587-018-0003-0
[11] Nieves-Cordones M, Mohamed S, Tanoi K, Kobayashi NI, Takagi K, et al. 2017. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. The Plant Journal 92:43−56 doi: 10.1111/tpj.13632
[12] Alfatih A, Wu J, Jan SU, Zhang Z, Xia J, et al. 2020. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell & Environment 43:2743−54 doi: 10.1111/pce.13856
[13] Tsai CJ, Xu P, Xue L, Hu H, Nyamdari B, et al. 2020. Compensatory Guaiacyl Lignin Biosynthesis at the Expense of Syringyl Lignin in 4CL1-Knockout Poplar. Plant Physiology 183:123−36 doi: 10.1104/pp.19.01550
[14] Wang F, Wang C, Liu P, Lei C, Hao W, et al. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027 doi: 10.1371/journal.pone.0154027
[15] Ribeiro CL, Conde D, Balmant KM, Dervinis C, Johnson MG, et al. 2020. The uncharacterized gene EVE contributes to vessel element dimensions in Populus. PNAS 117:5059−66 doi: 10.1073/pnas.1912434117
[16] Tu B, Zhang T, Wang Y, Hu L, Li J, et al. 2020. Membrane-associated xylanase-like protein OsXYN1 is required for normal cell wall deposition and plant development in rice. Journal of Experimental Botany 71:4797−811 doi: 10.1093/jxb/eraa200
[17] Liu L, Zhang J, Xu J, Li Y, Guo L, et al. 2020. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Science 301:110683 doi: 10.1016/j.plantsci.2020.110683
[18] Metje-Sprink J, Menz J, Modrzejewski D, Sprink T. 2019. DNA-free genome editing: past, present and future. Frontiers in Plant Science 9:1957 doi: 10.3389/fpls.2018.01957
[19] Wolabu TW, Park JJ, Chen M, Cong L, Ge Y, et al. 2020. Improving the genome editing efficiency of CRISPR/Cas9 in Arabidopsis and Medicago truncatula. Planta 252:15 doi: 10.1007/s00425-020-03415-0
[20] Liang G, Zhang H, Lou D, Yu D. 2016. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Scientific Reports 6:21451 doi: 10.1038/srep21451
[21] LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, et al. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. The Plant Journal 93:377−86 doi: 10.1111/tpj.13782
[22] Li VR, Zhang Z, Troyanskaya OG. 2021. CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes. Bioinformatics 37:i342−i348 doi: 10.1093/bioinformatics/btab268
[23] Tripathi L, Ntui VO, Tripathi JN, Kumar PL. 2021. Application of CRISPR/Cas for diagnosis and management of viral diseases of banana. Frontiers in Microbiology 27; 11:609784 doi: 10.3389/fmicb.2020.609784
[24] Chen S, Wang Y, Yu L, Zheng T, Wang S, et al. 2021. Genome sequence and evolution of Betula platyphylla. Horticulture Research 8:37 doi: 10.1038/s41438-021-00481-7
[25] Zeng D, Ma X, Xie X, Zhu Q, Liu Y. 2018. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. SCIENTIA SINICA Vitae 48:783−94 doi: 10.1360/N052018-00069
[26] Zang D, Wang L, Zhang Y, Zhao H, Wang Y. 2017. ThDof1.4 and ThZFP1 constitute a transcriptional regulatory cascade involved in salt or osmotic stress in Tamarix hispida. Plant Molecular Biology 94:495−507 doi: 10.1007/s11103-017-0620-x