[1] Hunt ND, Hill JD, Liebman M. 2019. Cropping system diversity effects on nutrient discharge, soil erosion, and agronomic performance. Environmental Science & Technology 53:1344−52 doi: 10.1021/acs.est.8b02193
[2] Zhao G, Mu X, Wen Z, Wang F, Gao P. 2013. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development 24:499−510 doi: 10.1002/ldr.2246
[3] Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, et al. 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv 151:53−59 doi: 10.1016/j.biocon.2012.01.068
[4] Lu Y, Song S, Wang R, Liu Z, Meng J, et al. 2015. Impacts of soil and water pollution on food safety and health risks in China. Environment International 77:5−15 doi: 10.1016/j.envint.2014.12.010
[5] Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International 125:365−85 doi: 10.1016/j.envint.2019.01.067
[6] Ramón F, Lull C. 2019. Legal measures to prevent and manage soil contamination and to increase food safety for consumer health: The case of Spain. Environmental Pollution 250:883−91 doi: 10.1016/j.envpol.2019.04.074
[7] Diacono M, Montemurro F. 2011. Long-term effects of organic amendments on soil fertility. In Sustainable Agriculture, eds. Lichtfouse E, Hamelin M, Navarrete M, Debaeke P, 2:xx,992. Dordrecht: Springer. pp. 761−86 https://doi.org/10.1007/978-94-007-0394-0_34
[8] Barthod J, Rumpel C, Dignac MF. 2018. Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development 38:17 doi: 10.1007/s13593-018-0491-9
[9] Ayuke FO, Brussaard L, Vanlauwe B, Six J, Lelei DK, et al. 2011. Soil fertility management: impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology 48:53−62 doi: 10.1016/j.apsoil.2011.02.001
[10] Chew KW, Chia SR, Yen HW, Nomanbhay S, Ho YC, et al. 2019. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 11:2266 doi: 10.3390/su11082266
[11] Šimanský V, Juriga M., Jonczak J, Uzarowicz Ł, Stępień W. 2019. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 342:75−84 doi: 10.1016/j.geoderma.2019.02.020
[12] Abujabhah IS, Bound SA, Doyle R, Bowman JP. 2016. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology 98:243−253 doi: 10.1016/j.apsoil.2015.10.021
[13] Yao Q, Liu J, Yu Z, Li Y, Jin J, et al. 2017. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biology and Biochemistry 110:56−67 doi: 10.1016/j.soilbio.2017.03.005
[14] Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, et al. 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research 183:26−41 doi: 10.1016/j.micres.2015.11.007
[15] Zhu X, Chen B, Zhu L, Xing B. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution 227:98−115 doi: 10.1016/j.envpol.2017.04.032
[16] Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, et al. 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97:1−136 doi: 10.1007/s13225-019-00430-9
[17] Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, et al. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews 75:583−609 doi: 10.1128/MMBR.00020-11
[18] Tang J, Mo Y, Zhang J, Zhang R. 2011. Influence of biological aggregating agents associated with microbial population on soil aggregate stability. Applied Soil Ecology 47:153−59 doi: 10.1016/j.apsoil.2011.01.001
[19] Morris EK, Morris DJP, Vogt S, Gleber SC, Bigalke M, et al. 2019. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. The ISME Journal 13:1639−46 doi: 10.1038/s41396-019-0369-0
[20] Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, et al. 2016. Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ. Sci. Pollut. Res. 23:16904−25 doi: 10.1007/s11356-016-7003-8
[21] Bosco F, Mollea C. 2019. Mycoremediation in soil. In Environmental Chemistry and Recent Pollution Control Approaches, eds. Saldarriaga-Noreña H, Murillo-Tovar MA, Farooq R, Dongre R, Riaz S. London: Intechopen. pp. 173−188 https://www.intechopen.com/chapters/65862
[22] Banik S, Nandi R. 2000. Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of Volvariella volvacea mushroom. Journal of Scientific and Industrial Research 59:407−12
[23] Ma Y, Zhang F. 2004. Determination of the nutritive components of mycelia and fruitbody of Dictyophora Indusiata. Journal of Shanxi Agricultural University 4:389−91 doi: 10.13842/j.cnki.issn1671-8151.2004.04.021
[24] Wang X, 2007. Nutrition components analyse, extraction and antioxidant properties of polysaccharide of Stropharia rugosoannulata. Master thesis (in Chinese). Nanjing Normal University, Nanjing.
[25] Llarena-Hernández RC, Largeteau ML, Farnet AM, Foulongne-Oriol M, Ferrer N, et al. 2013. Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost. World Journal of Microbiology & Biotechnology 29:1243−53 doi: 10.1007/s11274-013-1287-3
[26] Pardo-Giménez A, Catalán L, Carrasco J, Álvarez-Ortí M, Zied D, et al. 2016. Effect of supplementing crop substrate with defatted pistachio meal on Agaricus bisporus and Pleurotus ostreatus production. J. Sci. Food Agric. 96:3838−45 doi: 10.1002/jsfa.7579
[27] Kulshreshtha S, Mathur N, Bhatnagar P. 2014. Mushroom as a product and their role in mycoremediation. AMB Express 4:29 doi: 10.1186/s13568-014-0029-8
[28] Philippoussis A, Diamantopoulou P. 2011. Agro-food industry wastes and agricultural residues conversion into high value products by mushroom cultivation. Proc. VII International Conference on Mushroom Biology and Mushroom Products, Arcachon, 2011. pp. 339−51
[29] Singh R, Shukla A, Tiwari S, Srivastava M. 2014. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable Sustainable Energy Reviews 32:713−728 doi: 10.1016/j.rser.2014.01.051
[30] Zervakis GI, Koutrotsios G. 2017. Solid-state fermentation of plant residues and agro-industrial wastes for the production of medicinal mushrooms. In Medicinal Plants and Fungi: Recent Advances in Research and Development, eds. Agrawal D, Tsay HS, Shyur LF, Wu YC, Wang SY. Singapore: Springer. pp. 365−96 https://doi.org/10.1007/978-981-10-5978-0_12
[31] Paula FS, Tatti E, Abram F, Wilson J, O'Flaherty V. 2017. Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. Journal of Environmental Management 196:476−86 doi: 10.1016/j.jenvman.2017.03.038
[32] Kulshreshtha S. 2019. Removal of pollutants using spent mushrooms substrates. Environmental Chemistry Letters 17:833−47 doi: 10.1007/s10311-018-00840-2
[33] Phan CW, Sabaratnam V. 2012. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Applied Microbiology and Biotechnology 96:863−73 doi: 10.1007/s00253-012-4446-9
[34] Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. 2016. Impact of spent mushroom substrates on the fate of pesticides in soil, and their use for preventing and/or controlling soil and water contamination: a review. Toxics 4:17 doi: 10.3390/toxics4030017
[35] Bruhn JN, Abright N, Mihail JD. 2010. Forest farming of wine-cap Stropharia mushrooms. Agroforestry Systems 79:267−75 doi: 10.1007/s10457-009-9257-3
[36] Pardo-Giménez A, Pardo JE, Dias ES, Rinker DL, Caitano CEC, et al. 2020. Optimization of cultivation techniques improves the agronomic behavior of Agaricus subrufescens. Scientific Reports 10:8154 doi: 10.1038/s41598-020-65081-2
[37] Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H. 2015. Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS One 10:e0138909 doi: 10.1371/journal.pone.0138909
[38] Royse DJ, Baars J, Tan Q. 2017. Current overview of mushroom production in the world. In Edible and medicinal mushrooms: technology and applications, eds. Zied DC, Pardo-Giménez A. Chichester, UK: John Wiley & Sons. pp. 5−13 https://doi.org/10.1002/9781119149446.ch2
[39] Chen MM. 2000. Cultivation techniques for Dictyophora, Polyporus umbellata, and Coprinus comatus. In Science and cultivation of edible fungi, ed. Griensven V. Rotterdam: Balkema. pp. 543−48
[40] Ahlawat OP, Tewari RP. 2007. Cultivation technology of paddy straw mushroom (Volvariella volvacea), eds. OP Ahlawat, RP Tewari. New Delhi: National Research Centre of Mushroom. pp. 1−33
[41] Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao R, Callac P, et al. 2012. Agaricus subrufescens: a review. Saudi Journal of Biological Sciences 19:131−46 doi: 10.1016/j.sjbs.2012.01.003
[42] Sánchez C. 2004. Modern aspects of mushroom culture technology. Applied Microbiology and Biotechnology 64:756−62 doi: 10.1007/s00253-004-1569-7
[43] Medina E, Paredes C, Bustamante MA, Moral R, Moreno-Caselles J. 2012. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 173:152−161 doi: 10.1016/j.geoderma.2011.12.011
[44] Zhang L, Sun X. 2014. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresource Technology 171:274−284 doi: 10.1016/j.biortech.2014.08.079
[45] Li X, Dong S, Yao Y, Shi W, Wu M, et al. 2016. Inoculation of bacteria for the bioremediation of heavy metals contaminated soil by Agrocybe aegerita. RSC Advances 6:65816−24 doi: 10.1039/C6RA11767H
[46] Chatterjee S, Sarma MK, Deb U, Steinhauser G, Walther C, et al. 2017. Mushrooms: from nutrition to mycoremediation. Environ. Sci. Pollut. Res. 24:19480−93 doi: 10.1007/s11356-017-9826-3
[47] Zhou J, Ge W, Zhang X, Wu J, Chen Q, et al. 2020. Effects of spent mushroom substrate on the dissipation of polycyclic aromatic hydrocarbons in agricultural soil. Chemosphere 259:127462 doi: 10.1016/j.chemosphere.2020.127462
[48] Vaezi AR, Ahmadi M, Cerdà A. 2017. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of the Total Environment 583:382−92 doi: 10.1016/j.scitotenv.2017.01.078
[49] Lotfalian M, Babadi TY, Akbari H. 2019. Impacts of soil stabilization treatments on reducing soil loss and runoff in cutslope of forest roads in Hyrcanian forests. CATENA 172:158−62 doi: 10.1016/j.catena.2018.08.023
[50] Seitz S, Goebes P, Puerta VL, Pereira EIP, Wittwer R, et al. 2019. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development 39:4 doi: 10.1007/s13593-018-0545-z
[51] Tisdall JM. 1994. Possible role of soil microorganisms in aggregation in soils. Plant and Soil 159:115−21 doi: 10.1007/BF00000100
[52] Mortimer PE, Pérez-Fernández MA, Valentine AJ. 2008. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology and Biochemistry 40:1019−27 doi: 10.1016/j.soilbio.2007.11.014
[53] Caesar-TonThat TC, Espeland E, Caesar AJ, Sainju UM, Lartey RT, et al. 2013. Effects of Agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of western wheatgrass (Pascopyrum smithii) in Eastern Montana rangeland. Microbial Ecology 66:120−31 doi: 10.1007/s00248-013-0194-3
[54] Ravi RK, Anusuya S, Balachandar M, Muthukumar T. 2019. Microbial Interactions in Soil Formation and Nutrient Cycling. In Mycorrhizosphere and Pedogenesis, eds. Varma A, Choudhary D. Singapore: Springer. pp. 363−82 https://doi.org/10.1007/978-981-13-6480-8_21
[55] Mshandete AM, Cuff J. 2008. Cultivation of three types of indigenous wild edible mushrooms: Coprinus cinereus, Pleurotus flabellatus and Volvariella volvocea on composted sisal decortications residue in Tanzania. African Journal of Biotechnology 7:4551−62 doi: 10.4314/ajb.v7i24.59635
[56] Lin F, Dong X, Chen X, Zhong J. 2012. Study screening on cultivation matrix of Dictyophora indusiata. Tropical Forestry 40:46−48
[57] Thongbai B, Wittstein K, Richter C, Miller SL, Hyde KD, et al. 2017. Successful cultivation of a valuable wild strain of Lepista sordida from Thailand. Mycological Progress 16:311−23 doi: 10.1007/s11557-016-1262-0
[58] Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, et al. 2020. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology and Biotechnology 7:5 doi: 10.1186/s40694-020-00095-z
[59] Sánchez C. 2010. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 85:1321−37 doi: 10.1007/s00253-009-2343-7
[60] Lehmann A, Zheng W, Rillig MC. 2017. Soil biota contributions to soil aggregation. Nature Ecology & Evolution 1:1828−35 doi: 10.1038/s41559-017-0344-y
[61] Thompson W, Rayner ADM. 1983. Extent, development and function of mycelial cord systems in soil. Transactions of the British Mycological Society 81:333−45 doi: 10.1016/S0007-1536(83)80085-0
[62] Donnelly DP, Boddy L. 2001. Mycelial dynamics during interactions between Stropharia caerulea and other cord-forming, saprotrophic basidiomycetes. New Phytologist 151:691−704 doi: 10.1046/j.0028-646x.2001.00211.x
[63] Yang Y, Li C, Ni S, Zhang H, Dong C. 2021. Ultrastructure and development of acanthocytes, specialized cells in Stropharia rugosoannulata, revealed by scanning electron microscopy (SEM) and cryo-SEM. Mycologia 113:65−77 doi: 10.1080/00275514.2020.1823184
[64] De la Porte A, Schmidt R, Yergeau É, Constant P. 2020. A gaseous milieu: extending the boundaries of the rhizosphere. Trends in Microbiology 28:536−42 doi: 10.1016/j.tim.2020.02.016
[65] Blanco-Canqui H, Lal R. 2004. Mechanisms of carbon sequestration in soil aggregates. Crit. Rev. Plant Sci. 23:481−504 doi: 10.1080/07352680490886842
[66] Rillig MC, Muller LA, Lehmann A. 2017. Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal 11:1943−48 doi: 10.1038/ismej.2017.56
[67] Helgason BL, Walley FL, Germida JJ. 2010. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Applied Soil Ecology 46:390−97 doi: 10.1016/j.apsoil.2010.10.002
[68] Casermeiro MA, Molina JA, de la Cruz Caravaca MT, Hernando Costa J, Hernando Massanet MI, et al. 2004. Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate. CATENA 57:91−107 doi: 10.1016/S0341-8162(03)00160-7
[69] García-Díaz A, Allas RB, Gristina L, Cerdà A, Pereira P, et al. 2016. Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 271:144−49 doi: 10.1016/j.geoderma.2016.02.020
[70] Machmuller MB, Kramer MG, Cyle TK, Hill N, Hancock D, et al. 2015. Emerging land use practices rapidly increase soil organic matter. Nature Communications 6:6995 doi: 10.1038/ncomms7995
[71] Keesstra S, Pereira P, Novara A, Brevik EC, Azorin-Molina C, et al. 2016. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 551−552:357−66 doi: 10.1016/j.scitotenv.2016.01.182
[72] Mohammad AG, Adam MA. 2010. The impact of vegetative cover type on runoff and soil erosion under different land uses. CATENA 81:97−103 doi: 10.1016/j.catena.2010.01.008
[73] Gobbi V, Nicoletto C, Zanin G, Sambo P. 2018. Specific humus systems from mushrooms culture. Appl. Soil Ecol. 123:709−13 doi: 10.1016/j.apsoil.2017.10.023
[74] Gong S, Chen C, Zhu J, Qi G, Jiang S. 2018. Effects of wine-cap Stropharia cultivation on soil nutrients and bacterial communities in forestlands of northern China. PeerJ 6:e5741 doi: 10.7717/peerj.5741
[75] Zhang Y, Ni J, Yang J, Zhang T, Xie D. 2017. Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharia rugodo-annulata intercropping system in the Three Gorges Reservoir area, China. Environmental Science and Pollution Research 24:18363−71 doi: 10.1007/s11356-017-9269-x
[76] Lou Z, Sun Y, Zhou X, Baig SA, Hu B, et al. 2017. Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil. Geoderma 307:30−37 doi: 10.1016/j.geoderma.2017.07.033
[77] Tan H, Kohler A, Miao R, Liu T, Zhang Q, et al. 2019. Multi-omic analyses of exogenous nutrient bag decomposition by the black morel Morchella importuna reveal sustained carbon acquisition and transferring. Environmental Microbiology 21:3909−26 doi: 10.1111/1462-2920.14741
[78] Ma Y, Wang Q, Sun X, Wang X, Su W, et al. 2014. A study on recycling of spent mushroom substrate to prepare chars and activated carbon. BioResources 9:3939−54 doi: 10.15376/biores.9.3.3939-3954
[79] Rinker DL. 2017. Spent mushroom substrate uses. In Edible and medicinal mushrooms: technology and applications, eds. Zied DC, Pardo-Giménez A. Chichester, UK: John Wiley & Sons. pp. 427−54 https://doi.org/10.1002/9781119149446.ch20
[80] Kwak WS, Jung SH, Kim YI. 2008. Broiler litter supplementation improves storage and feed-nutritional value of sawdust-based spent mushroom substrate. Bioresource Technology 99:2947−55 doi: 10.1016/j.biortech.2007.06.021
[81] Mohd Hanafi FH, Rezania S, Mat Taib S, Md Din MF, Yamauchi M, et al. 2018. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. Journal of Material Cycles and Waste Management 20:1383−96 doi: 10.1007/s10163-018-0739-0
[82] Bong CPC, Lim LY, Ho WS, Lim JS, Klemeš JJ, et al. 2017. A review on the global warming potential of cleaner composting and mitigation strategies. Journal of Cleaner Production 146:149−57 doi: 10.1016/j.jclepro.2016.07.066
[83] Grimm D, Wösten HAB. 2018. Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology 102:7795−803 doi: 10.1007/s00253-018-9226-8
[84] Chang K, Chen X, Sun J, Liu J, Sun S, et al. 2017. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes. Environmental Technology 38:1765−69 doi: 10.1080/09593330.2016.1234000
[85] Demir H. 2017. The effects of spent mushroom compost on growth and nutrient contents of pepper seedlings. Mediterranean Agricultural Sciences 30:91−96
[86] Meng X, Dai J, Zhang Y, Wang X, Zhu W, et al. 2018. Composted biogas residue and spent mushroom substrate as a growth medium for tomato and pepper seedlings. Journal of Environmental Management 216:62−69 doi: 10.1016/j.jenvman.2017.09.056
[87] Naderi D, Fallahzade J. 2017. Investigation of the potential use of recycling spent mushroom compost as Marigold (Calendula officinalis) bedding medium. Journal of Plant Nutrition 40:2662−68 doi: 10.1080/01904167.2017.1381127
[88] Lou Z, Sun Y, Bian S, Baig SA, Hu B, et al. 2017. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere 169:23−31 doi: 10.1016/j.chemosphere.2016.11.044
[89] Lam SS, Lee XY, Nam WL, Phang XY, Liew RK, et al. 2019. Microwave vacuum pyrolysis conversion of waste mushroom substrate into biochar for use as growth medium in mushroom cultivation. Journal of Chemical Technology & Biotechnology 94:1406−15 doi: 10.1002/jctb.5897
[90] Oh YK, Lee WM, Choi CW, Kim KH, Hong SK, et al. 2010. Effects of spent mushroom substrates supplementation on rumen fermentation and blood metabolites in Hanwoo steers. Asian-Australasian Journal of Animal Sciences 23:1608−13 doi: 10.5713/ajas.2010.10200
[91] van Doan H, Hoseinifar SH, Dawood MAO, Chitmanat C, Tayyamath K. 2017. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology 70:87−94 doi: 10.1016/j.fsi.2017.09.002
[92] Collela CF, Costa LMAS, de Moraes TSJ, Zied DC, Rinker DL, et al. 2019. Potential utilization of spent Agaricus bisporus mushroom substrate for seedling production and organic fertilizer in tomato cultivation. Ciência e Agrotecnologia 43:e017119 doi: 10.1590/1413-7054201943017119
[93] Lopes RX, Zied DC, Martos ET, de Souza RJ, da Silva R, et al. 2015. Application of spent Agaricus subrufescens compost in integrated production of seedlings and plants of tomato. International Journal of Recycling of Organic Waste in Agriculture 4:211−18 doi: 10.1007/s40093-015-0101-7
[94] Othman NZ, Sarjuni MNH, Rosli MA, Nadri MH, Yeng LH, et al. 2020. Spent mushroom substrate as biofertilizer for agriculture application. In Valorisation of Agro-industrial Residues, eds. Zakaria Z, Boopathy R, Dib J. Cham: Springer. pp. 37−57 https://doi.org/10.1007/978-3-030-39137-9_2
[95] Gümüş İ, Şeker C. 2017. Effects of spent mushroom compost application on the physicochemical properties of a degraded soil. Solid Earth 8:1153−60 doi: 10.5194/se-8-1153-2017
[96] Swami S. 2019. Nitrogen mineralization kinetics in Typic camborthid soil amended with spent mushroom composts and farm yard manure. Journal of Pharmacognosy and Phytochemistry 8:1966−69
[97] Li F, Kong Q, Zhang Q, Wang H, Wang L, et al. 2020. Spent mushroom substrates affect soil humus composition, microbial biomass and functional diversity in paddy fields. Applied Soil Ecology 149:103489 doi: 10.1016/j.apsoil.2019.103489
[98] Yang W, Yan H, Zhang J, Meng Y, Wang X, et al. 2017. Response of rhizosphere microbial diversity and soil physico-chemical properties in a rotation of cucumber with Volvariella volvacea. Biocontrol Science and Technology 27:311−23 doi: 10.1080/09583157.2016.1252313
[99] Anastasi A, Coppola T, Prigione V, Varese GC. 2009. Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. Journal of Hazardous Materials 165:1229−33 doi: 10.1016/j.jhazmat.2008.10.032
[100] Anasonye F, Winquist E, Räsänen M, Kontro J, Björklöf K, et al. 2015. Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. International Biodeterioration & Biodegradation 105:7−12 doi: 10.1016/j.ibiod.2015.08.003
[101] Major J, Lehmann J, Rondon M, Goodale C. 2010. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology 16:1366−79 doi: 10.1111/j.1365-2486.2009.02044.x
[102] Czop M, Pikoń K. 2017. Use of casing soil from spent mushroom compost for energy recovery purposes in Poland. Architecture, Civil Engineering, Environment 10:95−102 doi: 10.21307/acee-2017-010
[103] Pérez-Chávez AM, Mayer L, Albertó E. 2019. Mushroom cultivation and biogas production: A sustainable reuse of organic resources. Energy for Sustainable Development 50:50−60 doi: 10.1016/j.esd.2019.03.002
[104] Zhao Z, Ibrahim MM, Wang X, Xing S, Heiling M, et al. 2019. Properties of biochar derived from spent mushroom substrates. BioResources 14:5254−77
[105] Yu Y, Li S, Qiu J, Li J, Luo Y, et al. 2019. Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field. Journal of Plant Nutrition and Soil Science 182(4):560−69 doi: 10.1002/jpln.201800223
[106] Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ. 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment 311:205−19 doi: 10.1016/S0048-9697(03)00139-6
[107] Damalas CA, Eleftherohorinos IG. 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health 8:1402−19 doi: 10.3390/ijerph8051402
[108] Udeigwe TK, Eze PN, Teboh JM, Stietiya MH. 2011. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Environment International 37:258−67 doi: 10.1016/j.envint.2010.08.008
[109] Chen M, Xu P, Zeng G, Yang C, Huang D, et al. 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnology Advances 33:745−55 doi: 10.1016/j.biotechadv.2015.05.003
[110] Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, et al. 2015. Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research 3:57−65 doi: 10.1016/j.iswcr.2015.03.002
[111] Yang Q, Li Z, Lu X, Duan Q, Huang L, et al. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. The Science of the Total Environment 642:690−700 doi: 10.1016/j.scitotenv.2018.06.068
[112] Buzmakov SA, Khotyanovskaya YV. 2020. Degradation and pollution of lands under the influence of oil resources exploitation. Applied Geochemistry 113:104443 doi: 10.1016/j.apgeochem.2019.104443
[113] Hölker F, Wolter C, Perkin EK, Tockner K. 2010. Light pollution as a biodiversity threat. Trends in Ecology & Evolution 25:681−82 doi: 10.1016/j.tree.2010.09.007
[114] Sardar K, Ali S, Hameed S, Afzal S, Fatima S, et al. 2013. Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety 2:172−79 doi: 10.15580/GJEMPS.2013.4.060413652
[115] Zhao F, Ma Y, Zhu Y, Tang Z, McGrath SP. 2015. Soil contamination in China: current status and mitigation strategies. Environmental Science & Technology 49:750−59 doi: 10.1021/es5047099
[116] Markham AC. 2019. A brief history of pollution. 178pp. Routledge. https://doi.org/10.4324/9780429344879
[117] Tomei MC, Daugulis AJ. 2013. Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Critical Reviews in Environmental Science and Technology 43:2107−39 doi: 10.1080/10643389.2012.672056
[118] Hestbjerg H, Willumsen PA, Christensen M, Andersen O, Jacobsen CS. 2003. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environmental Toxicology and Chemistry 22:692−98 doi: 10.1002/etc.5620220402
[119] Hamman S. 2004. Bioremediation capabilities of white rot fungi. BI570 − review article. Spring. pp. 1−12
[120] Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R. 2010. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. International Biodeterioration & Biodegradation 64:397−402 doi: 10.1016/j.ibiod.2010.04.007
[121] Adenipekun CO, Lawal R. 2012. Uses of mushrooms in bioremediation: a review. Biotechnol. Biotechnology and Molecular Biology Reviews 7:62−68 doi: 10.5897/bmbr12.006
[122] Cheng-Kim S, Abu Bakar A, Zalina Mahmood N, Abdullah N. 2016. Heavy metal contaminated soil bioremediation via vermicomposting with spent mushroom compost. ScienceAsia 42:367−74 doi: 10.2306/scienceasia1513-1874.2016.42.367
[123] Thakur M. 2019. Mushrooms as a biological tool in mycoremediation of polluted soils. In Emerging Issues in Ecology and Environmental Science, ed. Jindal T. Cham: Springer. pp. 27−42 https://doi.org/10.1007/978-3-319-99398-0_3
[124] Harms H, Schlosser D, Wick LY. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology 9:177−92 doi: 10.1038/nrmicro2519
[125] Barh A, Kumari B, Sharma S, Annepu SK, Kumar A, et al. 2019. Mushroom mycoremediation: kinetics and mechanism. In Smart Bioremediation Technologies: Microbial Enzymes, ed. Bhatt P. Netherlands: Academic Press, Elsevier. pp. 1−22
[126] Pandey RK, Tewari S, Tewari L. 2018. Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicology and Environmental Safety 158:50−58 doi: 10.1016/j.ecoenv.2018.04.003
[127] Branà MT, Sergio L, Haidukowski M, Logrieco AF, Altomare C. 2020. Degradation of Aflatoxin B1 by a sustainable enzymatic extract from spent mushroom substrate of Pleurotus eryngii. Toxins 12:49 doi: 10.3390/toxins12010049
[128] Pozdnyakova N, Dubrovskaya E, Chernyshova M, Makarov O, Golubev S, et al. 2018. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biology 122:363−72 doi: 10.1016/j.funbio.2018.02.007
[129] Sharma A, Singh SB, Sharma R, Chaudhary P, Pandey AK, et al. 2016. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. Journal of Environmental Management 181:728−36 doi: 10.1016/j.jenvman.2016.08.024
[130] Matute RG, Figlas D, Mockel G, Curvetto N. 2012. Degradation of metsulfuron methyl by Agaricus blazei Murrill spent compost enzymes. Bioremediation Journal 16:31−37 doi: 10.1080/10889868.2011.628353
[131] Toptas A, Demierege S, Mavioglu Ayan E, Yanik J. 2014. Spent mushroom compost as biosorbent for dye biosorption. CLEAN Soil Air Water 42(12):1721−28 doi: 10.1002/clen.201300657
[132] Frutos I, García-Delgado C, Gárate A, Eymar E. 2016. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. International Journal of Environmental Science and Technology 13:2713−20 doi: 10.1007/s13762-016-1100-6
[133] García-Delgado C, D'Annibale A, Pesciaroli L, Yunta F, Crognale S, et al. 2015. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. Sci. Total Environ. 508:20−28 doi: 10.1016/j.scitotenv.2014.11.046
[134] Tsujiyama SI, Nitta T, Maoka T. 2011. Biodegradation of polyvinyl alcohol by Flammulina velutipes in an unsubmerged culture. Journal of Bioscience and Bioengineering 112:58−62 doi: 10.1016/j.jbiosc.2011.03.004
[135] Wang Y, Zhang B, Chen N, Wang C, Feng S, et al. 2018. Combined bioremediation of soil co-contaminated with cadmium and endosulfan by Pleurotus eryngii and Coprinus comatus. Journal of Soils and Sediments 18(6):2136−47 doi: 10.1007/s11368-017-1762-9
[136] Kaur H, Kapoor S, Kaur G. 2016. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ. Monit Assess. 188:588 doi: 10.1007/s10661-016-5606-7
[137] Stella T, Covino S, Čvančarová M, Filipová A, Petruccioli M, et al. 2017. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous Materials 324:701−10 doi: 10.1016/j.jhazmat.2016.11.044
[138] Wang C, Yu D, Shi W, Jiao K, Wu B, et al. 2016. Application of spent mushroom (Lentinula edodes) substrate and acclimated sewage sludge on the bioremediation of polycyclic aromatic hydrocarbon polluted soil. RSC Advances 6:37274−85 doi: 10.1039/C6RA05457A
[139] Jia Z, Deng J, Chen N, Shi W, Tang X, et al. 2017. Bioremediation of cadmium-dichlorophen co-contaminated soil by spent Lentinus edodes substrate and its effects on microbial activity and biochemical properties of soil. Journal of Soils and Sediments 17:315−25 doi: 10.1007/s11368-016-1562-7
[140] Alves RP, Bolson SM, de Albuquerque MP, de Carvalho Victoria F, Pereira AB. 2017. A Potencial use of edible mushrooms Pleurotus ostreatoroseus Singer (Pleurotaceae) and Lentinus sajor-caju (Fr.) Fr. (Polyporaceae) in metal remediation processes. Revista De Biologia Neotropical 14:82−90 doi: 10.5216/rbn.v14i2.48421
[141] Oshomoh E, Bassey P. 2019. Bioremediative potential of Lentinus squarrosulus on crude oil extract. Journal of Laboratory Science 6:10−16
[142] Tang X, Dong S, Shi W, Gao N, Zuo L, et al. 2016. Fates of nickel and fluoranthene during the bioremediation by Pleurotus eryngii in three different soils. J. Basic Microbiol. 56:1194−202 doi: 10.1002/jobm.201600171
[143] da Luz JMR, Paes SA, Nunes MD, da Silva MdCS, Kasuya MCM. 2013. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One 8:e69386 doi: 10.1371/journal.pone.0069386
[144] Sadiq S, Mahmood-ul-Hassan M, Rafiq N, Ahad K. 2019. Spent mushroom compost of Pleurotus ostreatus: a tool to treat soil contaminated with endosulfan. Compost Science & Utilization 27:193−204 doi: 10.1080/1065657X.2019.1666067
[145] Njoku KL, Yussuf A, Akinola MO, Adesuyi AA, Jolaoso AO, et al. 2016. Mycoremediation of Petroleum hydrocarbon polluted soil by Pleurotus pulmonarius. Ethiopian Journal of Environmental Studies and Management 9:865−75 doi: 10.4314/ejesm.v9i1.6s
[146] Ogbo EM, Okhuoya JA. 2011. Bioavailability of some heavy metals in crude oil contaminated soils remediated with Pleurotus tuber-regium Fr. singer. Asian Journal of Biological Sciences 4:53−61 doi: 10.3923/ajbs.2011.53.61
[147] Steffen KT, Hatakka A, Hofrichter M. 2003. Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Applied and Environmental Microbiology 69:3957−64 doi: 10.1128/AEM.69.7.3957-3964.2003
[148] Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, et al. 2014. Bioremediation of PAH-contaminated soil with fungi – From laboratory to field scale. International Biodeterioration & Biodegradation 86:238−47 doi: 10.1016/j.ibiod.2013.09.012
[149] Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M. 2007. Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation 18:359−69 doi: 10.1007/s10532-006-9070-x
[150] Shahi A, Aydin S, Ince B, Ince O. 2016. The effects of white-rot fungi Trametes versicolor and Bjerkandera adusta on microbial community structure and functional genes during the bioaugmentation process following biostimulation practice of petroleum contaminated soil. International Biodeterioration & Biodegradation 114:67−74 doi: 10.1016/j.ibiod.2016.05.021
[151] Wilcke W. 2000. Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil − a review. J. Plant. Nutr. Soil Sci. 163:229−48 doi: 10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6
[152] Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials 169:1−15 doi: 10.1016/j.jhazmat.2009.03.137
[153] Abdel-Shafy HI, Mansour MSM. 2016. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25:107−23 doi: 10.1016/j.ejpe.2015.03.011
[154] Wang J, Odinga ES, Zhang W, Zhou X, Yang B, et al. 2019. Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. Environment International 130:104899 doi: 10.1016/j.envint.2019.06.009
[155] Antizar-Ladislao B, Lopez-Real J, Beck A. 2004. Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Critical Reviews in Environmental Science and Technology 34:249−89 doi: 10.1080/10643380490434119
[156] Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M. 2017. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. International Biodeterioration & Biodegradation 116:48−57 doi: 10.1016/j.ibiod.2016.09.030
[157] Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, et al. 2017. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. 51:52−74 doi: 10.1016/j.jes.2016.08.023
[158] Yadav S, Sharma S. 2019. Pesticides: Problems and Remedial Measures. In Evaluation of Environmental Contaminants and Natural Products: A Human Health Perspective, eds. Sharma A, Kumar M, Kaur S, Nagpal AK. Singapore: Bentham Science Publishers. pp. 94−115 https://doi.org/10.2174/9789811410963119010008
[159] Sadiq S, Mahmood-ul-Hassan M, Ahad K, Ishtiaq M. 2019. Bioremediation of endosulfan under solid-state and submerged fermentation of Pleurotus ostreatus and its correlation with lignolytic enzyme activities. Pol. J. Environ. Stud. 28:4529−36 doi: 10.15244/pjoes/97353
[160] Ribas LCC, De Mendonça MM, Camelini CM, Soares CHL. 2009. Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: Growth promotion and soil bioremediation. Bioresource Technology 100:4750−57 doi: 10.1016/j.biortech.2008.10.059
[161] Jin X, Yu X, Zhu G, Zheng Z, Feng F, et al. 2016. Conditions optimizing and application of laccase-mediator system (LMS) for the laccase-catalyzed pesticide degradation. Scientific Reports 6:35787 doi: 10.1038/srep35787
[162] Ahlawat OP, Gupta P, Kumar S, Sharma DK, Ahlawat K. 2010. Bioremediation of fungicides by spent mushroom substrate and its associated microflora. Indian J. Microbiol. 50:390−95 doi: 10.1007/s12088-011-0067-8
[163] Raina SA, Yahmed NB, Bhat RA, Dervash MA. 2020. Mycoremediation: a sustainable tool for abating environmental pollution. In Bioremediation and Biotechnology, eds. Hakeem KR, Bhat RA, Qadri H. Switzerland: Springer, Cham. pp. 269−91 https://doi.org/10.1007/978-3-030-35691-0_13
[164] Stoknes K, Scholwin F, Jasinska A, Wojciechowska E, Mleczek M, et al. 2019. Cadmium mobility in a circular food-to-waste-to-food system and the use of a cultivated mushroom (Agaricus subrufescens) as a remediation agent. Journal of Environmental Management 245:48−54 doi: 10.1016/j.jenvman.2019.03.134
[165] Liaqat I. 2017. Heavy metal bioremediation in soil: key species and strategies involved in the process. International Journal of Applied Biology and Forensics 1:38−48