[1] |
Balk J, Schaedler TA. 2014. Iron cofactor assembly in plants. Annual Review of Plant Biology 65:125−53 doi: 10.1146/annurev-arplant-050213-035759
|
[2] |
Connolly EL, Guerinot ML. 2002. Iron stress in plants. Genome Biology 3:reviews1024.1 doi: 10.1186/gb-2002-3-8-reviews1024
|
[3] |
Li Q, Chen L, Yang A. 2020. The molecular mechanisms underlying iron deficiency responses in rice. International Journal of Molecular Sciences 21:43 doi: 10.3390/ijms21010043
|
[4] |
Guerinot ML, Y Y. 1994. Iron: nutritious, noxious, and not readily available. Plant Physiology 104:815−20 doi: 10.1104/pp.104.3.815
|
[5] |
Curie C, Mari S. 2017. New routes for plant iron mining. New Phytologist 214:521−25 doi: 10.1111/nph.14364
|
[6] |
Wang M, Gong J, Bhullar NK. 2020. Iron deficiency triggered transcriptome changes in bread wheat. Computational and Structural Biotechnology Journal 18:2709−22 doi: 10.1016/j.csbj.2020.09.009
|
[7] |
Pestana M, Varennes A, Faria EA. 2003. Diagnosis and correction of iron chlorosis in fruit trees: a review. Journal of Food, Agriculture and Environment 1:46−51
|
[8] |
Kobayashi T. 2019. Understanding the complexity of iron sensing and signaling cascades in plants. Plant and Cell Physiology 60:1440−46 doi: 10.1093/pcp/pcz038
|
[9] |
Tong H, Madison I, Long TA, Williams CM. 2020. Computational solutions for modeling and controlling plant response to abiotic stresses: a review with focus on iron deficiency. Current Opinion in Plant Biology 57:8−15 doi: 10.1016/j.pbi.2020.05.006
|
[10] |
Ivanov R, Brumbarova T, Bauer P. 2012. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant 5:27−42 doi: 10.1093/mp/ssr065
|
[11] |
Kim SA, Guerinot ML. 2007. Mining iron: Iron uptake and transport in plants. FEBS Letter 581:2273−80 doi: 10.1016/j.febslet.2007.04.043
|
[12] |
Terry N, Abadía J. 1986. Function of iron in chloroplasts. Journal of Plant Nutrition 9:609−46 doi: 10.1080/01904168609363470
|
[13] |
Zhou C, Liu Z, Zhu L, Ma Z, Wang J, et al. 2016. Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide. International Journal of Molecular Sciences 17:1777 doi: 10.3390/ijms17111777
|
[14] |
López-Millán AF, Grusak MA, Abadía A, Abadía J. 2013. Iron deficiency in plants: an insight from proteomic approaches. Frontiers in Plant Science 4:254 doi: 10.3389/fpls.2013.00254
|
[15] |
Vigani G, Murgia I. 2018. Iron-requiring enzymes in the spotlight of oxygen. Trends in Plant Science 23:874−82 doi: 10.1016/j.tplants.2018.07.005
|
[16] |
Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, et al. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry 49:471−82 doi: 10.1016/j.plaphy.2011.01.026
|
[17] |
Wang Y, Hu Y, Zhu Y, Baloch AW, Jia X, et al. 2018. Transcriptional and physiological analyses of short-term Iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis. BMC Genomics 19:461 doi: 10.1186/s12864-018-4846-z
|
[18] |
Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90:856−67 doi: 10.1111/tpj.13299
|
[19] |
Mittler R. 2017. ROS are good. Trends in Plant Science 22:11−19 doi: 10.1016/j.tplants.2016.08.002
|
[20] |
Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373−99 doi: 10.1146/annurev.arplant.55.031903.141701
|
[21] |
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490−98 doi: 10.1016/j.tplants.2004.08.009
|
[22] |
Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, et al. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research 18:28−31 doi: 10.1111/j.1600-079X.1995.tb00136.x
|
[23] |
Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, et al. 1995. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International 35:627−34
|
[24] |
Back K, Tan D, Reiter RJ. 2016. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research 61:426−37 doi: 10.1111/jpi.12364
|
[25] |
Sun C, Liu L, Wang L, Li B, Jin C, et al. 2021. Melatonin: a master regulator of plant development and stress responses. Journal of Integrative Plant Biology 63:127−45 doi: 10.1111/jipb.12993
|
[26] |
Wang L, Feng C, Zheng X, Guo Y, Zhou F, et al. 2017. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. Journal of Pineal Research 63:e12429 doi: 10.1111/jpi.12429
|
[27] |
Zhang H, Wang L, Shi K, Shan D, Zhu Y, et al. 2019. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. Journal of Pineal Research 66:e12551 doi: 10.1111/jpi.12551
|
[28] |
Zhao D, Wang H, Chen S, Yu D, Reiter RJ. 2021. Phytomelatonin: an emerging regulator of plant biotic stress resistance. Trends in Plant Science 26:70−82 doi: 10.1016/j.tplants.2020.08.009
|
[29] |
Zheng X, Tan D, Allan AC, Zuo B, Zhao Y, et al. 2017. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Scientific Reports 7:41236 doi: 10.1038/srep41236
|
[30] |
Zheng X, Zhou J, Tan D, Wang N, Wang L, et al. 2017. Melatonin improves waterlogging tolerance of Malus baccata (Linn.) Borkh. seedlings by maintaining aerobic respiration, photosynthesis and ROS migration. Frontiers in Plant Science 8:483 doi: 10.3389/fpls.2017.00483
|
[31] |
Li C, Tan D, Liang D, Chang C, Jia D, et al. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany 66:669−80 doi: 10.1093/jxb/eru476
|
[32] |
Li C, Wang P, Wei Z, Liang D, Liu C, et al. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research 53:298−306 doi: 10.1111/j.1600-079X.2012.00999.x
|
[33] |
Wang P, Sun X, Li C, Wei Z, Liang D, et al. 2013. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research 54:292−302 doi: 10.1111/jpi.12017
|
[34] |
Wang P, Yin L, Liang D, Li C, Ma F, et al. 2012. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. Journal of Pineal Research 53:11−20 doi: 10.1111/j.1600-079X.2011.00966.x
|
[35] |
Zheng X, Li Y, Xi X, Ma C, Sun Z, et al. 2021. Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. Plant Physiology and Biochemistry 159:113−22 doi: 10.1016/j.plaphy.2020.12.015
|
[36] |
Su Q, Zheng X, Tian Y, Wang C. 2020. Exogenous brassinolide alleviates salt stress in Malus hupehensis Rehd. by regulating the transcription of NHX-Type Na+(K+)/H+ antiporters. Frontiers in Plant Science 11:38 doi: 10.3389/fpls.2020.00038
|
[37] |
Zhao Y, Tan D, Lei Q, Chen H, Wang L, et al. 2013. Melatonin and its potential biological functions in the fruits of sweet cherry. Journal of Pineal Research 55:79−88 doi: 10.1111/jpi.12044
|
[38] |
Zheng X, Zhao Y, Shan D, Shi K, Wang L, et al. 2018. MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase MdDWF4 expression. New Phytologist 217:1086−98 doi: 10.1111/nph.14891
|