[1] Schardl CL. 2001. Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genetics and Biology 33:69−82 doi: 10.1006/fgbi.2001.1275
[2] Card SD, Faville MJ, Simpson WR, Johnson RD, Voisey CR, et al. 2014. Mutualistic fungal endophytes in the Triticeae - survey and description. FEMS Microbiology Ecology 88:94−106 doi: 10.1111/1574-6941.12273
[3] Lane GA, Christensen MJ, Miles CO. 2000. Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In Microbial Endophytes, ed. Bacon CW, White J. Boca Raton: CRC Press. pp. 341−88 https://doi.org/10.1201/9781482277302-17
[4] Kuldau G, Bacon C. 2008. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control 46:57−71
[5] Caradus JR, Johnson LJ. 2020. Epichloë fungal endophytes − From a biological curiosity in wild grasses to an essential component of resilient high performing ryegrass and fescue pastures. Journal of Fungi 6:322 doi: 10.3390/jof6040322
[6] Hewitt KG, Popay AJ, Hofmann RW, Caradus JR. 2021. Epichloë − a lifeline for temperate grasses under combined drought and insect pressure. Grass Research 1:7 doi: 10.48130/GR-2021-0007
[7] Malinowski DP, Beleskey DP, Lewis GC. 2005. Abiotic stresses in endophytic grasses. In Neotyphodium in Cool-Season Grasses, ed. Roberts CA, West CP, Spiers DE. Ames, Iowa: Blackwell Publishing Professional. pp. 187−99 https://doi.org/10.1002/9780470384916.ch8
[8] Clay K. 1988. Clavicipitaceous fungal endophytes of grasses: coevolution and the change from parasitism to mutualism. In Coevolution of Fungi with Plants and Animals, eds. Pirozynski KA, Hawksworth DL. London: Academic Press. pp. 79−105
[9] Wilkinson HH, Schardl CL. 1997. The evolution of mutualism in grass-endophyte associations. In Neotyphodium/Grass Interactions, eds. Bacon CW, Hill NS. New York: Plenum Press. pp. 13−25 https://doi.org/10.1007/978-1-4899-0271-9_2
[10] Saikkonen K, Wäli P, Helander M, Faeth SH. 2004. Evolution of endophyte-plant symbioses. Trends in Plant Science 9:275−80 doi: 10.1016/j.tplants.2004.04.005
[11] Saikkonen K, Ion D, Gyllenberg M. 2002. The persistence of vertically transmitted fungi in grass metapopulations. Proceedings of the Royal Society of London. Series B: Biological Sciences 269:1397−403 doi: 10.1098/rspb.2002.2006
[12] Faeth SH, Sullivan TJ. 2003. Mutualistic asexual endophytes in a native grass are usually parasitic. The American Naturalist 161:310−25 doi: 10.1086/345937
[13] Newman JA, Gillis S, Hager HA. 2021. Costs, benefits, parasites and mutualists: The use and abuse of the mutualism-parasitism continuum concept for Epichloëfungi. Philosophy, Theory and Practice in Biology In Press doi: 10.1101/2021.04.21.440766
[14] Bouton J, Easton S. 2004. Endophytes in forage cultivars. In Neotyphodium in Cool-Season Grasses, eds. Roberts CA, West CP, Spiers DE. Ames, Iowa: Blackwell Publishing Professional. pp. 327−40 https://doi.org/10.1002/9780470384916.ch15
[15] Easton HS, Fletcher LR. 2006. The importance of endophyte in agricultural systems - changing plant and animal productivity. NZGA: Research and Practice Series 13:11−8 doi: 10.33584/rps.13.2006.3080
[16] Johnson LJ, de Bonth ACM, Briggs LR, Caradus JR, Finch SC, et al. 2013. The exploitation of epichloae endophytes for agricultural benefit. Fungal Diversity 60:171−88 doi: 10.1007/s13225-013-0239-4
[17] Guo J, McCulley RL, McNear DH Jr. 2015. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Frontiers in Plant Science 6:183 doi: 10.3389/fpls.2015.00183
[18] Ferguson CM, Barratt BIP, Bell N, Goldson SL, Hardwick S, et al. 2018. Quantifying the economic cost of invertebrate pests to New Zealand’s pastoral industry. New Zealand Journal of Agricultural Research 62:255−315 doi: 10.1080/00288233.2018.1478860
[19] Rowan DD, Dymock JJ, Brimble MA. 1990. Effect of fungal metabolite peramine and analogs on feeding and development of Argentine stem weevil (Listronotus bonariensis). Journal of Chemical Ecology 16:1683−95 doi: 10.1007/BF01014100
[20] Pennell CGL, Popay AJ, Ball OJP, Hume DE, Baird DB. 2005. Occurrence and impact of pasture mealybug (Balanococcus poae) and root aphid (Aploneura lentisci) on ryegrass (Lolium spp.) with and without infection by Neotyphodium fungal endophytes. New Zealand Journal of Agricultural Research 48:329−37 doi: 10.1080/00288233.2005.9513663
[21] Thom ER, Popay AJ, Waugh CD, Minneé EMK. 2014. Impact of novel endophytes in perennial ryegrass on herbage production and insect pests from pastures under dairy cow grazing in northern New Zealand. Grass and Forage Science 69:191−204 doi: 10.1111/gfs.12040
[22] Latch GCM, Hunt WF, Musgrave DR. 1985. Endophytic fungi affect growth of perennial ryegrass. New Zealand Journal of Agricultural Research 28:165−68 doi: 10.1080/00288233.1985.10427011
[23] Hahn H, McManus MT, Warnstorff K, Monahan BJ, Young CA, et al. 2008. Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environmental and Experimental Botany 63:183−99 doi: 10.1016/j.envexpbot.2007.10.021
[24] Hume DE, Popay AJ, Barker DJ. 1993. Effect of Acremonium endophyte on growth of ryegrass and tall fescue under varying levels of soil moisture and Argentine stem weevil attack. Proc. Second International Symposium on Acremonium/Grass Interactions, Palmerston North, New Zealand, 1993: 161−64. New Zealand: AgResearch
[25] Barker DJ, Hume DE, Quigley PE. 1997. Negligible physiological responses to water deficit in endophyte-infected and uninfected perennial ryegrass. In Neotyphodium/Grass Interactions, eds. Bacon CW, Hill NS. Athens, Georgia: Plenum Press, New York. pp. 137−40 https://doi.org/10.1007/978-1-4899-0271-9_20
[26] Eerens JPJ, Lucas RJ, Easton S, White JGH. 1998. Influence of the endophyte (Neotyphodium lolii) on morphology, physiology, and alkaloid synthesis of perennial ryegrass during high temperature and water stress. New Zealand Journal of Agricultural Research 41:219−26 doi: 10.1080/00288233.1998.9513305
[27] Lewis GC. 2004. Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Annals of Applied Biology 144:53−63 doi: 10.1111/j.1744-7348.2004.tb00316.x
[28] Cheplick GP, Cho R. 2003. Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytologist 158:183−91 doi: 10.1046/j.1469-8137.2003.00723.x
[29] Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, et al. 2005. Influence of water supply and endophyte infection (Neotyphodium spp.) on vegetative and reproductive growth of two Lolium perenne L. genotypes. European Journal of Agronomy 22:45−54 doi: 10.1016/j.eja.2003.12.002
[30] Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, et al. 2003. Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass and Forage Science 58:407−15 doi: 10.1111/j.1365-2494.2003.00393.x
[31] Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE. 1989. Effect of the tall fescue endophyte on plant response to environmental stress. Agronomy Journal 81:83−90 doi: 10.2134/agronj1989.00021962008100010015x
[32] De Battista JP, Bacon CW, Severson R, Plattner RD, Bouton JH. 1990. Indole acetic acid production by fungal endophyte of tall fescue. Agronomy Journal 82:878−80 doi: 10.2134/agronj1990.00021962008200050006x
[33] Malinowski DP, Belesky DP. 2000. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science 40:923−40 doi: 10.2135/cropsci2000.404923x
[34] Malinowski DP, Belesky DP. 1999. Neotyphodium coenophialum - endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. Journal of Plant Nutrition 22:835−53 doi: 10.1080/01904169909365675
[35] De Battista J, Altier N, Galdames DR, Dall'Agnol M. 1997. Significance of endophyte toxicosis and current practices in dealing with the problem in South America. In Neotyphodium/Grass Interactions, eds. Bacon CW, Hill NS. Athens, Georgia: Plenum Press, New York. pp. 383−88 https://doi.org/10.1007/978-1-4899-0271-9_60
[36] Lewis GC. 2000. Neotyphodium endophytes: incidence, diversity, and hosts in Europe. Proc. the 4th International Symposium on Neotyphodium/Grass Interactions, Soest, Germany, 2000: 201−5. Soest, Germany: University of Paderborn
[37] Sugawara K, Inoue T, Yamashita M, Ohkubo H. 2006. Distribution of the endophytic fungus, Neotyphodium occultans in naturalized Italian ryegrass in western Japan and its production of bioactive alkaloids known to repel insect pests. Grassland Science 52:147−54 doi: 10.1111/j.1744-697X.2006.00060.x
[38] Decunta FA, Pérez LI, Malinowski DP, Molina-Montenegro MA, Gundel PE. 2021. A systematic review on the effects of E pichloë fungal endophytes on drought tolerance in cool-season grasses. Frontiers in Plant Science 12:644731 doi: 10.3389/fpls.2021.644731
[39] Bazely DR, Vicari M, Emmerich S, Filip L, Lin D, et al. 1997. Interactions between herbivores and endophyte-infected Festuca rubra from the Scottish islands of St Kilda, Benbecula and Rum. The Journal of Applied Ecology 34:847−60 doi: 10.2307/2405276
[40] Popay AJ, Hume DE. 2011. Endophytes improve ryegrass persistence by controlling insects. NZGA: Research and Practice Series, Pasture Persistence Symposium 15:149−56 doi: 10.33584/rps.15.2011.3196
[41] Popay AJ, Hume DE, Mace WJ, Faville MJ, Finch SC, et al. 2021. A root aphid, Aploneura lentisci, is affected by Epichloë endophyte strain and impacts perennial ryegrass growth in the field. Crop and Pasture Science 72:155−64 doi: 10.1071/CP20299
[42] Popay AJ, Hume DE, Baltus JG, Latch GCM, Tapper BA, et al. 1999. Field performance of perennial ryegrass (Lolium perenne) infected with toxin-free fungal endophytes (Neotyphodium spp.). NZGA: Research and Practice Series 7:113−22 doi: 10.33584/rps.7.1999.3388
[43] Hume DE, Ryan DL, Cooper BM, Popay AJ. 2007. Agronomic performance of AR37-infected ryegrass in northern New Zealand. Proceedings of the New Zealand Grassland Association 69:201−5 doi: 10.33584/jnzg.2007.69.2673
[44] Hume DE, Sewell JC. 2014. Agronomic advantages conferred by endophyte infection of perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) in Australia. Crop and Pasture Science 65:747−57 doi: 10.1071/CP13383
[45] Popay AJ, Cox NR. 2016. Aploneura lentisci (Homoptera: Aphididae) and its interactions with fungal endophytes in perennial ryegrass (Lolium perenne). Frontiers in Plant Science 7:1395 doi: 10.3389/fpls.2016.01395
[46] Whitham TG, Maschinski J, Larson KC, Paige KN. 1991. Plant responses to herbivory: the continuum from negative to positive and underlying physiological mechanisms. In Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions, eds. Price PW, Lewinsohn TM, Fernandes GW, Benson WW. New York: John Wiley & Sons, Inc. pp. 227−56
[47] Fagerstrom T, Larsson S, Tenow O. 1987. On optimal defence in plants. Functional Ecology 1:73−81 doi: 10.2307/2389708
[48] Kaplan I, Sardanelli S, Rehill BJ, Denno RF. 2011. Toward a mechanistic understanding of competition in vascular-feeding herbivores: an empirical test of the sink competition hypothesis. Oecologia 166:627−36 doi: 10.1007/s00442-010-1885-9
[49] Hume DE, Cooper BM, Panckhurst KA. 2009. The role of endophyte in determining the persistence and productivity of ryegrass, tall fescue and meadow fescue in Northland. Proceedings of the New Zealand Grassland Association 71:145−50 doi: 10.33584/jnzg.2009.71.2754
[50] Faeth SH. 2009. Asexual fungal symbionts alter reproductive allocation and herbivory over time in their native perennial grass hosts. The American Naturalist 173:554−65 doi: 10.1086/597376
[51] Faeth SH, Hayes CJ, Gardner DR. 2010. Asexual endophytes in a native grass: Tradeoffs in mortality, growth, reproduction, and alkaloid production. Microbial Ecology 60:496−504 doi: 10.1007/s00248-010-9643-4
[52] Gundel PE, Pérez LI, Helander M, Saikkonen K. 2013. Symbiotically modified organisms: Nontoxic fungal endophytes in grasses. Trends in Plant Science 18:1360−85 doi: 10.1016/j.tplants.2013.03.003
[53] Vila Aiub MM, Ghersa CM. 2001. The role of fungal endophyte infection in the evolution of Lolium multiflorum resistance to diclofop-methyl. Weed Research, June 41:265−74 doi: 10.1046/j.1365-3180.2001.00236.x
[54] Omacini M, Semmartin M, Pérez LI, Gundel PE. 2012. Grass-endophyte symbiosis: A neglected aboveground interaction with multiple belowground consequences. Applied Soil Ecology 61:273−79 doi: 10.1016/j.apsoil.2011.10.012
[55] Bronstein JL. 2001. The costs of mutualism. American Zoologist 41:825−39 doi: 10.1093/icb/41.4.825
[56] Ball OJP, Lane GA, Prestidge RA. 1995. Acremonium lolii, ergovaline and peramine production in endophyte-infected perennial ryegrass. Proceedings of the New Zealand Plant Protection Conference 48:224−28 doi: 10.30843/nzpp.1995.48.11486
[57] Ball OJP, Prestidge RA, Sprosen JM. 1995. Interrelationships between Acremonium lolii, peramine, and lolitrem B in perennial ryegrass. Applied and Environmental Microbiology 61:1527−33 doi: 10.1128/aem.61.4.1527-1533.1995
[58] Fuchs B, Krischke M, Mueller MJ, Krauss J. 2017. Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecology 29:52−58 doi: 10.1016/j.funeco.2017.06.003
[59] Spiering MJ, Lane GA, Christensen MJ, Schmid J. 2005. Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 66:195−202 doi: 10.1016/j.phytochem.2004.11.021
[60] Gange AC, Ayres RL. 1999. On the relation between arbuscular mycorrhizal colonization and plant 'benefit'. Oikos 87:615−21 doi: 10.2307/3546829
[61] Rudgers JA, Miller TEX, Ziegler SM, Craven KD. 2012. There are many ways to be a mutualist: Endophytic fungus reduces plant survival but increases population growth. Ecology 93:565−74 doi: 10.1890/11-0689.1
[62] Crush JR, Popay AJ, Waller J. 2004. Effect of different Neotyphodium endophytes on root distribution of a perennial ryegrass (Lolium perenne L.) cultivar. New Zealand Journal of Agricultural Research 47:345−49 doi: 10.1080/00288233.2004.9513603
[63] Popay AJ, Crush JR. 2010. Influence of different forage grasses on nitrate capture and leaching loss from a pumice soil. Grass and Forage Science 65:28−37 doi: 10.1111/j.1365-2494.2009.00717.x
[64] Lund ZF, Pearson RW, Buchanan GA. 1970. An implanted soil mass technique to study herbicide effects on root growth. Weed Science 18:279−81 doi: 10.1017/S0043174500079753
[65] do Rosário G Oliveira M, van Noordwijk M, Gaze SR, Brouwer G, Bona S, et al. 2000. Auger sampling, ingrowth cores and pinboard methods. In Root Methods A Handbook, eds. Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, et al. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. pp. 175−210 https://doi.org/10.1007/978-3-662-04188-8_6
[66] Simpson WR, Schmid J, Singh JB, Faville MJ, Johnson RD. 2012. A morphological change in the fungal symbiont Neotyphodium lolii induces dwarfing in its host plant Lolium perenne. Fungal Biology 116:234−40 doi: 10.1016/j.funbio.2011.11.006
[67] di Menna ME, Waller JE. 1986. Visual assessment of seasonal changes in amount of mycelium of Acremonium loliae in leaf sheaths of perennial ryegrass. New Zealand Journal of Agricultural Research 29:111−16 doi: 10.1080/00288233.1986.10417982