[1] |
Giovannoni JJ. 2004. Genetic regulation of fruit development and ripening. The Plant Cell 16:S170−S180 doi: 10.1105/tpc.019158
|
[2] |
Klee HJ, Giovannoni JJ. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics 45:41−59 doi: 10.1146/annurev-genet-110410-132507
|
[3] |
Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, et al. 1999. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. The Plant Cell 11:2203−16 doi: 10.1105/tpc.11.11.2203
|
[4] |
Brummell DA, Harpster MH. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology 47:311−40 doi: 10.1023/A:1010656104304
|
[5] |
Tucker G, Yin X, Zhang A, Wang M, Zhu Q, et al. 2017. Ethylene and fruit softening. Food Quality and Safety 1:253−67 doi: 10.1093/fqsafe/fyx024
|
[6] |
Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C. 2013. Fruit development and ripening. Annual Review of Plant Biology 64:219−41 doi: 10.1146/annurev-arplant-050312-120057
|
[7] |
Wang D, Yeats, TH, Uluisik S, Rose JKC, Seymour GB. 2018. Fruit Softening: Revisiting the Role of Pectin. Trends Plant Sci 23:302−10 doi: 10.1016/j.tplants.2018.01.006
|
[8] |
Daher FB, Braybrook SA. 2015. How to let go: Pectin and plant cell adhesion. Frontiers in Plant Science 14:523 doi: 10.3389/fpls.2015.00523
|
[9] |
Romero P, Rose JKC. 2019. A relationship between tomato fruit softening, cuticle properties and water availability. Food Chemistry 295:300−10 doi: 10.1016/j.foodchem.2019.05.118
|
[10] |
Dellapenna D, Alexander DC, Bennett AB. 1986. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening. PNAS 83:6420−24 doi: 10.1073/pnas.83.17.6420
|
[11] |
Jeong HY, Nguyen HP, Eom SH, Lee C. 2018. Integrative analysis of pectin methylesterase (PME) and PME inhibitors in tomato (Solanum lycopersicum): Identification, tissue-specific expression, and biochemical characterization. Plant Physiology and Biochemistry 132:557−65 doi: 10.1016/j.plaphy.2018.10.006
|
[12] |
Lazan H, Ng SY, Goh LY, Ali ZM. 2004. Papayaβ-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiology and Biochemistry 42:847−53 doi: 10.1016/j.plaphy.2004.10.007
|
[13] |
Ishimaru M, Smith DL, Mort AJ, Gross KC. 2009. Enzymatic activity and substrate specificity of recombinant tomato β-galactosidases 4 and 5. Planta 229:447−56 doi: 10.1007/s00425-008-0842-x
|
[14] |
Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, et al. 2019. Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato. Plant Physiology 179:544−57 doi: 10.1104/pp.18.01187
|
[15] |
Minoia S, Boualem A, Marcel F, Troadec C, Quemener B, et al. 2016. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. Plant Science 242:195−202 doi: 10.1016/j.plantsci.2015.07.001
|
[16] |
Perini MA, Sin IN, Villarreal NM, Marina M, Powell AL, et al. 2017. Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility. Plant Physiology and Biochemistry 113:122−32 doi: 10.1016/j.plaphy.2017.01.029
|
[17] |
Marín-Rodríguez MC, Orchard J, Seymour GB. 2002. Pectate lyases, cell wall degradation and fruit softening. Journal of Experimental Botany 53:2115−19 doi: 10.1093/jxb/erf089
|
[18] |
Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, et al. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334:724−26 doi: 10.1038/334724a0
|
[19] |
Smith CJS, Watson CF, Morris PC, Bird CR, Seymour GB, et al. 1990. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Molecular Biology 14:369−79 doi: 10.1007/BF00028773
|
[20] |
Sheehy RE, Kramer M, Hiatt WR. 1988. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. PNAS 85:8805−9 doi: 10.1073/pnas.85.23.8805
|
[21] |
Tieman DM, Harriman RW, Ramamohan G, Handa AK. 1992. An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. The Plant Cell 4:667−79 doi: 10.2307/3869525
|
[22] |
Tieman DM, Handa AK. 1994. Reduction in Pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) Fruits. Plant Physiol 106:429−36 doi: 10.1104/pp.106.2.429
|
[23] |
Smith DL, Abbott JA, Gross KC. 2002. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiology 129:1755−62 doi: 10.1104/pp.011025
|
[24] |
Uluisik S, Chapman NH, Smith R, Poole M, Adams G, et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology 34:950−52 doi: 10.1038/nbt.3602
|
[25] |
Yang L, Huang W, Xiong F, Xian Z, Su D, et al. 2017. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnology Journal 15:1544−55 doi: 10.1111/pbi.12737
|
[26] |
Jiménez-Bermúdez S, Redondo-Nevado J, Muñoz-Blanco J, Caballero JL, López-Aranda JM, et al. 2002. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiology 128:751−59 doi: 10.1104/pp.010671
|
[27] |
Santiago-Doménech N, Jiménez-Bemúdez S, Matas AJ, Rose JKC, Muñoz-Blanco J, et al. 2008. Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. Journal of Experimental Botany 59:2769−79 doi: 10.1093/jxb/ern142
|
[28] |
Karlova R, Chapman N, David K, Angenent GC, Seymour GB, et al. 2014. Transcriptional control of fleshy fruit development and ripening. Journal of Experimental Botany 65:4527−41 doi: 10.1093/jxb/eru316
|
[29] |
Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. 2017. The epigenome and transcriptional dynamics of fruit ripening. Annual Review of Plant Biology 68:61−84 doi: 10.1146/annurev-arplant-042916-040906
|
[30] |
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, et al. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343−46 doi: 10.1126/science.1068181
|
[31] |
Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Toki S. 2017. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nature Plants 3:866−74 doi: 10.1038/s41477-017-0041-5
|
[32] |
Li S, Xu H, Ju Z, Cao D, Zhu H, et al. 2018. The RIN-MC Fusion of MADS-Box Transcription Factors Has Transcriptional Activity and Modulates Expression of Many Ripening Genes. Plant Physiology 176:891−909 doi: 10.1104/pp.17.01449
|
[33] |
Li S, Zhu B, Pirrello J, Xu C, Zhang B, et al. 2020. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytologist 226:460−75 doi: 10.1111/nph.16362
|
[34] |
Yuan X, Wang R, Zhao X, Luo Y, Fu D. 2016. Role of the tomato non-ripening mutation in regulating fruit quality elucidated using iTRAQ protein profile analysis. PLoS One 11:e0164335 doi: 10.1371/journal.pone.0164335
|
[35] |
Orfila C, Huisman MM, Willats WG, van Alebeek GJ, Schols HA, et al. 2002. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215:440−447 doi: 10.1007/s00425-002-0753-1
|
[36] |
Manning K, Tör M, Poole M, Hong Y, Thompson AJ, et al. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics 38:948−52 doi: 10.1038/ng1841
|
[37] |
Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker GA, Seymour GB. 2004. Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiology 136:4184−97 doi: 10.1104/pp.104.045765
|
[38] |
Giovannoni JJ. 2007. Fruit ripening mutants yield insights into ripening control. Current Opinion in Plant Biology 10:283−89 doi: 10.1016/j.pbi.2007.04.008
|
[39] |
Ito Y, Sekiyama Y, Nakayama H, Nishizawa-Yokoi A, Endo M, et al. 2020. Allelic mutations in the Ripening-Inhibitor locus generate extensive variation in tomato ripening. Plant Physiology 183:80−95 doi: 10.1104/pp.20.00020
|
[40] |
Gao Y, Wei W, Fan Z, Zhao X, Zhang Y, et al. 2020. Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. Journal of Experimental Botany 71:3560−74 doi: 10.1093/jxb/eraa131
|
[41] |
Gao Y, Zhu N, Zhu X, Wu M, Jiang CZ, Grierson D, Luo Y, Shen W, Zhong S, Fu DQ, Qu G. 2019. Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Horticulture Research 6:39 doi: 10.1038/s41438-019-0122-x
|
[42] |
Wang R, Tavano ECDR, Lammers M, Martinelli AP, Angenent GC, et al. 2019. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Scientific Reports 9:1696 doi: 10.1038/s41598-018-38170-6
|
[43] |
Wang R, Angenent GC, Seymour G, de Maagd RA. 2020. Revisiting the Role of Master Regulators in Tomato Ripening. Trends in Plant Science 25:291−301 doi: 10.1016/j.tplants.2019.11.005
|
[44] |
Gao Y, Wei W, Zhao X, Tan X, Fan Z, et al. 2018. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Horticulture Research 5:75 doi: 10.1038/s41438-018-0111-5
|
[45] |
Ma N, Feng H, Meng X, Li D, Yang D, et al. 2014. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology 14:351 doi: 10.1186/s12870-014-0351-y
|
[46] |
Meng C, Yang D, Ma X, Zhao W, Liang X, et al. 2016. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology 193:88−96 doi: 10.1016/j.jplph.2016.01.014
|
[47] |
Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, et al. 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant Cell 23:923−41 doi: 10.1105/tpc.110.081273
|
[48] |
Zhu M, Chen G, Zhou S, Tu Y, Wang Y, et al. 2014. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant and Cell Physiology 55:119−135 doi: 10.1093/pcp/pct162
|
[49] |
Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, et al. 2014. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports 33:1851−63 doi: 10.1007/s00299-014-1662-z
|
[50] |
Luo D, Ba L, Shan W, Kuang J, Lu W, Chen J. 2017. Involvement of WRKY transcription factors in abscisic-acid-induced cold tolerance of banana fruit. Journal of Agricultural and Food Chemistry 65:3627−35 doi: 10.1021/acs.jafc.7b00915
|
[51] |
Lei Y, Lu L, Liu H, Li S, Xing F, et al. 2014. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant 7:1494−1496 doi: 10.1093/mp/ssu044
|
[52] |
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8:1274−1284 doi: 10.1016/j.molp.2015.04.007
|
[53] |
Wu T, Abbott JA. 2002. Firmness and force relaxation characteristics of tomatoes stored intact or as slices. Postharvest Biology and Technology 24:59−68 doi: 10.1016/S0925-5214(01)00133-8
|
[54] |
Russin WA, Trivett CL. 2001. Vacuum-microwave combination for processing plant tissues for electron microscopy. In Microwave Techniques and Protocols, eds. Giberson RT, Demaree RS Jr. Totowa, NJ: Humana Press. pp 25–35 https://doi.org/10.1007/978-1-59259-128-2_3
|
[55] |
Han Y, Kuang J, Chen J, Liu X, Xiao Y, et al. 2016. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiology 171:1070−84 doi: 10.1104/pp.16.00301
|
[56] |
Sainsbury F, Thuenemann EC, Lomonossoff GP. 2009. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnology Journal 7:682−93 doi: 10.1111/j.1467-7652.2009.00434.x
|
[57] |
Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, et al. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13 doi: 10.1186/1746-4811-1-13
|
[58] |
Fan Z, Kuang J, Fu C, Shan W, Han Y, et al. 2016. The Banana transcriptional repressor MaDEAR1 negatively regulates cell wall-modifying genes involved in fruit ripening. Frontiers in Plant Science 7:1021 doi: 10.3389/fpls.2016.01021
|
[59] |
Liu Y, Li P, Fan L, Wu M. 2018. The nuclear transportation routes of membrane-bound transcription factors. Cell Communication and Signaling 16:12 doi: 10.1186/s12964-018-0224-3
|
[60] |
Hoppe T, Rape M, Jentsch S. 2001. Membrane-bound transcription factors: regulated release by RIP or RUP. Current Opinion in Cell Biology 13:344−48 doi: 10.1016/S0955-0674(00)00218-0
|
[61] |
Yang Z, Wang M, Sun L, Lu S, Bi D, et al. 2014. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genetics 10:e1004243 doi: 10.1371/journal.pgen.1004243
|
[62] |
Liu X, Lyu Y, Yang W, Yang Z, Lu S, et al. 2020. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal 18:1317−29 doi: 10.1111/pbi.13297
|
[63] |
Yang JH, Lee KH, Du Q, Yang S, Yuan B, et al. 2020. A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity. New Phytologist 226:59−74 doi: 10.1111/nph.16289
|
[64] |
Kim SG, Kim SY, Park CM. 2007. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647−54 doi: 10.1007/s00425-007-0513-3
|
[65] |
Yang S, Zhou J, Watkins CB, Wu C, Feng Y, et al. 2021. NAC transcription factors SNAC4 and SNAC9 synergistically regulate tomato fruit ripening by affecting expression of genes involved in ethylene and abscisic acid metabolism and signal transduction. Postharvest Biology and Technology 178:111555 doi: 10.1016/j.postharvbio.2021.111555
|
[66] |
Bao A, Burritt DJ, Chen H, Zhou X, Cao D, et al. 2019. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol 39:321−36 doi: 10.1080/07388551.2018.1554621
|
[67] |
Barman A, Deb B, Chakraborty S. 2020. A glance at genome editing with CRISPR-Cas9 technology. Current Genetics 66:447−62 doi: 10.1007/s00294-019-01040-3
|
[68] |
Manghwar H, Lindsey K, Zhang X, Jin S. 2019. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science 24:1102−25 doi: 10.1016/j.tplants.2019.09.006
|
[69] |
Chen K, Wang Y, Zhang R, Zhang H, Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70:667−97 doi: 10.1146/annurev-arplant-050718-100049
|
[70] |
Wang T, Zhang H, Zhu H. 2019. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture Research 6:77 doi: 10.1038/s41438-019-0159-x
|
[71] |
Forlani S, Mizzotti C, Masiero S. 2021. The NAC side of the fruit: tuning of fruit development and maturation. BMC Plant Biology 21:238 doi: 10.1186/s12870-021-03029-y
|
[72] |
Martín-Pizarro C, Vallarino JG, Osorio S, Meco V, Urrutia M, et al. 2021. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell 33:1574−93 doi: 10.1093/plcell/koab070
|
[73] |
Shan W, Kuang J, Wei W, Fan Z, Deng W, et al. 2020. MaXB3 modulates MaNAC2, MaACS1, and MaACO1 stability to repress ethylene biosynthesis during banana fruit ripening. Plant Physiology 184:1153−71 doi: 10.1104/pp.20.00313
|
[74] |
Shan W, Kuang J, Chen L, Xie H, Peng H, et al. 2012. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. Journal of Experimental Botany 63:5171−87 doi: 10.1093/jxb/ers178
|
[75] |
Fu B, Wang W, Liu X, Duan X, Allan AC, et al. 2021. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. New Phytologist 232:237−51 doi: 10.1111/nph.17560
|
[76] |
Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, et al. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82:105−21 doi: 10.1111/tpj.12792
|
[77] |
Migicovsky Z, Yeats TH, Watts S, Song J, Forney CF, et al. 2021. Apple ripening is controlled by a NAC transcription factor. Frontiers in Genetics 12:671300 doi: 10.3389/fgene.2021.671300
|
[78] |
Zhao C, Zhang H, Song C, Zhu J, Shabala S. 2020. Mechanisms of Plant Responses and Adaptation to Soil Salinity. The Innovation 1:100017 doi: 10.1016/j.xinn.2020.100017
|