[1] Lesk C, Coffel E, D’Amato AW, Dodds K, Horton R. 2017. Threats to North American forests from southern pine beetle with warming winters. Nature Climate Change 7:713−17 doi: 10.1038/nclimate3375
[2] Dodds KJ, Aoki CF, Arango-Velez A, Cancelliere J, D’Amato AW, et al. 2018. Expansion of southern pine beetle into northeastern forests: Management impact of a primary bark beetle in a new region. Journal of Forestry 116:178−91 doi: 10.1093/jofore/fvx009
[3] Weed AS, Ayres MP, Hicke JA. 2013. Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs 83:441−70 doi: 10.1890/13-0160.1
[4] Boddy L, Hiscox J, Gilmartin EC et al. 2017. Wood decay communities in angiosperm wood. In The Fungal Community: Its Organization and Role in the Ecosystem, Fourth Edition, eds. Dighton J, White JF, 32:619. Boca Raton: CRC Press. pp. 169−89 https://doi.org/10.1201/9781315119496
[5] Hyde JC, Smith AMS, Ottmar RD, Alvarado EC, Morgan P. 2011. The combustion of sound and rotten coarse woody debris: a review. International Journal of Wildland Fire 20:163−74 doi: 10.1071/WF09113
[6] Uzoh FCC, Skinner CN. 2009. Effects of creating two forest structures and using prescribed fire on coarse woody debris in northeastern California, USA. Fire Ecology 5:1−13 doi: 10.4996/fireecology.0502001
[7] Page WG, Jenkins MJ, Runyon JB. 2012. Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage. Canadian Journal of Forest Research 42:1631−47 doi: 10.1139/x2012-094
[8] Makoto K, Kamata N, Kamibayashi N, Koike T, Tani H. 2012. Bark-beetle-attacked trees produced more charcoal than unattacked trees during a forest fire on the Kenai Peninsula, Southern Alaska. Scandinavian Journal of Forest Research 27:30−35 doi: 10.1080/02827581.2011.619566
[9] Clark EL, Huber DPW, Carroll AL. 2012. The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins. Environmental Entomology 41:392−98 doi: 10.1603/EN11295
[10] Six DL, Wingfield MJ. 2011. The role of phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Annual Review of Entomology 56:255−72 doi: 10.1146/annurev-ento-120709-144839
[11] Klepzig KD, Wilkens RT. 1997. Competitive interactions among symbiotic fungi of the southern pine beetle. Applied and Environmental Microbiology 63:621−27 doi: 10.1128/aem.63.2.621-627.1997
[12] Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E. 2000. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198−210 doi: 10.1890/0012-9658(2000)081[2198:NBOPFB]2.0.CO;2
[13] Hofstetter RW, Klepzig KD, Moser JC, Ayres MP. 2006. Seasonal dynamics of mites and fungi and their interaction with southern pine beetle. Environmental Entomology 35:22−30 doi: 10.1603/0046-225X-35.1.22
[14] Hofstetter RW, Cronin JT, Klepzig KD, Moser JC, Ayres MP. 2006. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147:679−91 doi: 10.1007/s00442-005-0312-0
[15] Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, et al. 2008. Bacterial protection of beetle-fungus mutualism. Science 322:63 doi: 10.1126/science.1160423
[16] Strid YME. 2012. Bark beetles facilitate the establishment of wood decay fungi. PhD. Thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden
[17] Fukami T, Dickie IA, Wilkie JP, Paulus BC, Park D, et al. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecology Letters 13:675−84 doi: 10.1111/j.1461-0248.2010.01465.x
[18] Murphy G, Cown D. 2015. Within-tree, between-tree and geospatial variation in estimated Pinus radiata bark volume and weight in New Zealand. New Zealand Journal of Forestry Science 45:18 doi: 10.1186/s40490-015-0048-5
[19] Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, et al. 2013. Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide. New Phytologist 199:288−99 doi: 10.1111/nph.12243
[20] Leonhardt S, Hoppe B, Stengel E, Noll L, Moll J, et al. 2019. Molecular fungal community and its decomposition activity in sapwood and heartwood of 13 temperate European tree species. PLoS One 14:e0212120 doi: 10.1371/journal.pone.0212120
[21] Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD. 2011. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Applied and Environmental Microbiology 77:3846−52 doi: 10.1128/AEM.02772-10
[22] Kubartová A, Ottosson E, Dahlberg A, Stenlid J. 2012. Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Molecular Ecology 21:4514−32 doi: 10.1111/j.1365-294X.2012.05723.x
[23] Kazartsev I, Shorohova E, Kapitsa E, Kushnevskaya H. 2018. Decaying Picea abies log bark hosts diverse fungal communities. Fungal Ecology 33:1−12 doi: 10.1016/j.funeco.2017.12.005
[24] Ottosson E, Nordén J, Dahlberg A, Edman M, Jönsson M, et al. 2014. Species associations during the succession of wood-inhabiting fungal communities. Fungal Ecology 11:17−28 doi: 10.1016/j.funeco.2014.03.003
[25] Kebli H, Drouin P, Brais S, Kernaghan G. 2011. Species composition of saproxylic fungal communities on decaying logs in the boreal forest. Microbial Ecology 61:898−910 doi: 10.1007/s00248-010-9790-7
[26] Dickie IA, Fukami T, Wilkie JP, Allen RB, Buchanan PK. 2012. Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi Ecology Letters 15:133−41 doi: 10.1111/j.1461-0248.2011.01722.x
[27] Cornelissen JHC, Sass-Klaassen U, Poorter L, van Geffen K, van Logtestijn RSP, et al. 2012. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment. AMBIO 41:231−45 doi: 10.1007/s13280-012-0304-3
[28] Conde E, Cadahia E, Garcia-Vallejo MC, Tomas-Barberan F. 1995. Low molecular weight polyphenols in wood and bark of Eucalyptus globulus. Wood and fiber science 27:379−83
[29] Nunes E, Quilhó T, Pereira H. 1999. Anatomy and chemical composition of Pinus pinea L. bark. Annals of Forest Science 56:479−84 doi: 10.1051/forest:19990604
[30] Boddy L. 2000. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiology Ecology 31:185−94 doi: 10.1111/j.1574-6941.2000.tb00683.x
[31] Persson Y, Ihrmark K, Stenlid J. 2011. Do bark beetles facilitate the establishment of rot fungi in Norway spruce? Fungal Ecology 4:262−69 doi: 10.1016/j.funeco.2011.01.005
[32] Skelton J, Jusino MA, Carlson PS, Smith K, Banik MT, et al. 2019. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Molecular Ecology 28:4917−86 doi: 10.1111/mec.15263
[33] Dossa GGO, Paudel E, Cao K, Schaefer D, Harrison RD. 2016. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species. Scientific Reports 6:34153 doi: 10.1038/srep34153
[34] Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460−61 doi: 10.1093/bioinformatics/btq461
[35] Tedersoo L, May TW, Smith ME. 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217−63 doi: 10.1007/s00572-009-0274-x
[36] Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, et al. 2018. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47:D259−D264 doi: 10.1093/nar/gky1022
[37] Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, et al. 2016. MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Computational Biology 12:e1004957 doi: 10.1371/journal.pcbi.1004957
[38] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12:R60 doi: 10.1186/gb-2011-12-6-r60