[1] Körner C. 2003. Carbon limitation in trees. Journal of Ecology 91:4−17 doi: 10.1046/j.1365-2745.2003.00742.x
[2] Hoch G, Richter A, Körner C. 2003. Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment 26:1067−81 doi: 10.1046/j.0016-8025.2003.01032.x
[3] Würth MKR, Peláez-Riedl S, Wright SJ, Körner C. 2005. Non-structural carbohydrate pools in a tropical forest. Oecologia 143:11−24 doi: 10.1007/s00442-004-1773-2
[4] Chapin FS, Schulze E, Mooney HA. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21:423−47 doi: 10.1146/annurev.es.21.110190.002231
[5] Barbaroux C, Bréda N. 2002. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology 22:1201−10 doi: 10.1093/treephys/22.17.1201
[6] Hartmann H, Trumbore S. 2016. Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytologist 211:386−403 doi: 10.1111/nph.13955
[7] Piper FI, Fajardo A. 2014. Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. Journal of Ecology 102:1101−11 doi: 10.1111/1365-2745.12284
[8] Sala A, Hoch G. 2009. Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant, Cell & Environment 32:22−30 doi: 10.1111/j.1365-3040.2008.01896.x
[9] Obeso JR. 2002. The costs of reproduction in plants. New Phytologist 155:321−48 doi: 10.1046/j.1469-8137.2002.00477.x
[10] Yasumura Y, Hikosaka K, Hirose T. 2006. Resource allocation to vegetative and reproductive growth in relation to mast seeding in Fagus crenata. Forest Ecology and Management 229:228−33 doi: 10.1016/j.foreco.2006.04.003
[11] Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA. 2015. The influence of masting phenomenon on growth – climate relationships in trees: explaining the influence of previous summers' climate on ring width. Tree Physiology 35:319−30 doi: 10.1093/treephys/tpv007
[12] Han Q, Kabeya D, Hoch G. 2011. Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of CO2 enrichment. Annals of Botany 107:1405−11 doi: 10.1093/aob/mcr082
[13] Kabeya D, Inagaki Y, Noguchi K, Han Q. 2017. Growth rate reduction causes a decline in the annual incremental trunk growth in masting Fagus crenata trees. Tree Physiology 37:1444−52 doi: 10.1093/treephys/tpx081
[14] Kelly D. 1994. The evolutionary ecology of mast seeding. Trends in Ecology & Evolution 9:465−70 doi: 10.1016/0169-5347(94)90310-7
[15] Kelly D, Sork VL. 2002. Mast seeding in perennial plants: why, how, where? Annual Review of Ecology and Systematics 33:427−47 doi: 10.1146/annurev.ecolsys.33.020602.095433
[16] Newbery DM, Chuyong GB, Zimmermann L. 2006. Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis. New Phytologist 170:561−79 doi: 10.1111/j.1469-8137.2006.01691.x
[17] Isagi Y, Sugimura K, Sumida A, Ito H. 1997. How does masting happen and synchronize? Journal of Theoretical Biology 187:231−39 doi: 10.1006/jtbi.1997.0442
[18] Satake A, Iwasa Y. 2000. Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. Journal of Theoretical Biology 203:63−84 doi: 10.1006/jtbi.1999.1066
[19] Goldschmidt E, Golomb A. 1982. The carbohydrate balance of alternate-bearing citrus and significance of reserves for flowering and fruiting. Journal of the American Society for Horticultural Science 107:206−8
[20] Wood BW, McMeans JL. 1981. Carbohydrate changes in various oranges of bearing and non-bearing pecan trees. Journal of the American Society for Horticultural Science 106:758−61
[21] Spann TM, Beede RH, DeJong TM. 2008. Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera) trees. Tree Physiology 28:207−13 doi: 10.1093/treephys/28.2.207
[22] Miyazaki Y, Hiura T, Kato E, Funada R. 2002. Allocation of resources to reproduction in Styrax obassia in a masting year. Annals of Botany 89:767−72 doi: 10.1093/aob/mcf107
[23] Ichie T, Kenzo T, Kitahashi Y, Koike T, Nakashizuka T. 2005. How does Dryobalanops aromatica supply carbohydrate resources for reproduction in a masting year? Trees 19:704−11 doi: 10.1007/s00468-005-0434-3
[24] Hoch G. 2005. Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees. Plant, Cell & Environment 28:651−59 doi: 10.1111/j.1365-3040.2004.01311.x
[25] Kabeya D, Sakai A, Matsui K, Sakai S. 2003. Resprouting ability of Quercus crispula seedlings depends on the vegetation cover of their microhabitats. Journal of Plant Research 116:207−16 doi: 10.1007/s10265-003-0089-3
[26] Kabeya D, Sakai S. 2005. The relative importance of carbohydrate and nitrogen for the resprouting ability of Quercus crispula seedlings. Annals of Botany 96:479−88 doi: 10.1093/aob/mci200
[27] Kobe RK, Iyer M, Walters MB. 2010. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91:166−79 doi: 10.1890/09-0027.1
[28] Richardson AD, Carbone MS, Huggett BA, Furze ME, Czimczik CI, et al. 2015. Distribution and mixing of old and new nonstructural carbon in two temperate trees. New Phytologist 206:590−97 doi: 10.1111/nph.13273
[29] Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, et al. 2013. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist 197:850−61 doi: 10.1111/nph.12042
[30] Furze ME, Trumbore S, Hartmann H. 2018. Detours on the phloem sugar highway: stem carbon storage and remobilization. Current Opinion in Plant Biology 43:89−95 doi: 10.1016/j.pbi.2018.02.005
[31] Barbaroux C, Bréda N, Dufrêne E. 2003. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytologist 157:605−15 doi: 10.1046/j.1469-8137.2003.00681.x
[32] Thomas SC. 2011. Age-related changes in tree growth and functional biology: the role of reproduction. In Size- and Age-Related Changes in Tree Structure and Function, eds. Meinzer FC, Lachenbruch B, Dawson TE, 4: XIV, 514. Dordrecht Heidelberg London New York: Springer. pp. 33−64 https://doi.org/10.1007/978-94-007-1242-3_2
[33] Finér L, Ohashi M, Noguchi K, Hirano Y. 2011. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management 262:2008−23 doi: 10.1016/j.foreco.2011.08.042
[34] Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, et al. 2016. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs 86:495−516 doi: 10.1002/ecm.1231
[35] Hoch G, Siegwolf RTW, Keel SG, Körner C, Han Q. 2013. Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 171:653−62 doi: 10.1007/s00442-012-2579-2
[36] Kuptz D, Fleischmann F, Matyssek R, Grams TEE. 2011. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytologist 191:160−72 doi: 10.1111/j.1469-8137.2011.03676.x
[37] Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, et al. 2012. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiology 32:776−98 doi: 10.1093/treephys/tps057
[38] Han Q, Kagawa A, Kabeya D, Inagaki Y. 2016. Reproduction-related variation in carbon allocation to woody tissues in Fagus crenata using a natural 13C approach. Tree Physiology 36:1343−52 doi: 10.1093/treephys/tpw074
[39] Ichie T, Igarashi S, Yoshida S, Kenzo T, Masaki T, et al. 2013. Are stored carbohydrates necessary for seed production in temperate deciduous trees? Journal of Ecology 101:525−31 doi: 10.1111/1365-2745.12038
[40] Shibata M, Masaki T, Yagihashi T, Shimada T, Saitoh T. 2020. Decadal changes in masting behaviour of oak trees with rising temperature. Journal of Ecology 108:1088−100 doi: 10.1111/1365-2745.13337
[41] Genet H, Bréda N, Dufrêne E. 2010. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiology 30:177−92 doi: 10.1093/treephys/tpp105
[42] Miyazaki Y, Maruyama Y, Chiba Y, Kobayashi MJ, Joseph B, et al. 2014. Nitrogen as a key regulator of flowering in Fagus crenata: understanding the physiological mechanism of masting by gene expression analysis. Ecology Letters 17:1299−309 doi: 10.1111/ele.12338
[43] Han Q, Kabeya D, Iio A, Inagaki Y, Kakubari Y. 2014. Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia 174:679−87 doi: 10.1007/s00442-013-2824-3
[44] Han Q, Kabeya D. 2017. Recent developments in understanding mast seeding in relation to dynamics of carbon and nitrogen resources in temperate trees. Ecological Research 32:771−78 doi: 10.1007/s11284-017-1494-8
[45] Sala A, Hopping K, McIntire EJB, Delzon S, Crone EE. 2012. Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients. New Phytologist 196:189−99 doi: 10.1111/j.1469-8137.2012.04257.x
[46] Ichie T, Nakagawa M. 2013. Dynamics of mineral nutrient storage for mast reproduction in the tropical emergent tree Dryobalanops aromatica. Ecological Research 28:151−58 doi: 10.1007/s11284-011-0836-1
[47] Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, et al. 2010. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist 187:485−93 doi: 10.1111/j.1469-8137.2010.03274.x
[48] Trap J, Akpa-Vinceslas M, Margerie P, Boudsocq S, Richard F, et al. 2017. Slow decomposition of leaf litter from mature Fagus sylvatica trees promotes offspring nitrogen acquisition by interacting with ectomycorrhizal fungi. Journal of Ecology 105:528−39 doi: 10.1111/1365-2745.12665
[49] Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, et al. 2013. Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytologist 200:1145−55 doi: 10.1111/nph.12448
[50] Vargas R, Trumbore SE, Allen MF. 2009. Evidence of old carbon used to grow new fine roots in a tropical forest. New Phytologist 182:710−18 doi: 10.1111/j.1469-8137.2009.02789.x
[51] Ögren E, Nilsson T, Sundblad LG. 1997. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: indications of different sensitivities of spruce and pine. Plant, Cell & Environment 20:247−53 doi: 10.1046/j.1365-3040.1997.d01-56.x
[52] Poirier M, Lacointe A, Améglio T. 2010. A semi-physiological model of cold hardening and dehardening in walnut stem. Tree Physiology 30:1555−69 doi: 10.1093/treephys/tpq087
[53] Han Q, Kabeya D, Iio A, Kakubari Y. 2008. Masting in Fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiology 28:1269−76 doi: 10.1093/treephys/28.8.1269
[54] Han Q, Iio A, Naramoto M, Kakubari Y. 2010. Response of internal conductance to soil drought in sun and shade leaves of adult Fagus crenata. Acta Silvatica & Lignaria Hungarica 6:123−34
[55] Hacket-Pain AJ, Lageard JGA, Thomas PA. 2017. Drought and reproductive effort interact to control growth of a temperate broadleaved tree species (Fagus sylvatica). Tree Physiology 37:744−54 doi: 10.1093/treephys/tpx025
[56] Kakubari Y. 1977. Beech forests in the Naeba Mountains: distribution of primary productivity along the altitudinal gradient. In Primary Productivity of Japanese Forest., edS. Shidei T, Kira T. Tokyo: University of Tokyo Press. pp. 201−12
[57] Kubota M, Tenhunen J, Zimmermann R, Schmidt M, Adiku S, et al. 2005. Influences of environmental factors on the radial profile of sap flux density in Fagus crenata growing at different elevations in the Naeba Mountains, Japan. Tree Physiology 25:545−56 doi: 10.1093/treephys/25.5.545
[58] Kabeya D. 2010. Differentiating between the adverse effects of nutrient-limitation and direct-cold-limitation on tree growth at high altitudes. Arctic, Antarctic, and Alpine Research 42:430−37 doi: 10.1657/1938-4246-42.4.430
[59] Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed Effects Models and Extensions in Ecology with R. New York: Springer-Verlag. XXII, 574 pp. https://www.springer.com/gp/book/9780387874579