[1] Franklin-Tong V, Franklin FCH. 2003. Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends in Plant Science 8:598−605 doi: 10.1016/j.tplants.2003.10.008
[2] Končalová MN. 1978. D. de Nettancourt Incompatibility in angiosperms. Folia Geobotanica et Phytotaxonomica 13:370 doi: 10.1007/BF02851938
[3] Charlesworth D. 2010. Self-incompatibility. F1000 Biology Reports 2:68 doi: 10.3410/B2-68
[4] McClure BA, Franklin-Tong V. 2006. Gametophytic self-incompatibility: understanding the cellular mechanisms involved in "self" pollen tube inhibition. Planta 224:233−45 doi: 10.1007/s00425-006-0284-2
[5] Roalson EH, Mccubbin AG. 2003. S-RNases and sexual incompatibility: structure, functions and evolutionary perspectives. Molecular Phylogenetics and Evolution 29:490−506 doi: 10.1016/s1055-7903(03)00195-7
[6] Minamikawa M, Kakui H,Wang S, Kotoda N, Kikuchi S, et al. 2010. Apple S locus region represents a large cluster of related, polymorphic and pollen-specific F-box genes. Plant Molecular Biology 74:143−54 doi: 10.1007/s11103-010-9662-z
[7] Kubo KI, Entani T, Takara A, Wang N, Fields AM, et al. 2010. Collaborative non-self recognition system in S-RNase–based self-incompatibility. Science. 330:796−799 doi: 10.1126/science.1195243
[8] Okada K, Moriya S, Haji T, Abe K. 2013. Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.). Plant Reproduction 26:101−11 doi: 10.1007/s00497-013-0212-0
[9] Zisovich A, Stern RA, Goldway M. 2009. Identification of seven haplotype-specific SFBs in European pear (Pyrus communis) and their use as molecular markers. Scientia Horticulturae 121:49−53 doi: 10.1016/j.scienta.2009.01.006
[10] Pratas MI, Aguiar B, Vieira J, Nunes V, Teixeira V, et al. 2018. Inferences on specificity recognition at the Malus × domestica gametophytic self-incompatibility system. Scientific Reports 8:1717 doi: 10.1038/s41598-018-19820-1
[11] Broothaerts W. 2003. New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theoretical and Applied Genetics 106:703−14 doi: 10.1007/s00122-002-1120-0
[12] Broothaerts W, Keulemans J, Van Nerum I. 2004. Self-fertile apple resulting from S-RNase gene silencing. Plant Cell Reports 22:497−501 doi: 10.1007/s00299-003-0716-4
[13] Kim H, Hattori G, Hirata Y, Kim DI, Hwang JH, et al. 2006. Determination of self-incompatibility genotypes of Korean apple cultivars based on S-RNase PCR. Journal of Plant Biology 49:448−54 doi: 10.1007/BF03031125
[14] Kim H, Kakui H, Kotoda N, Hirata Y, Koba T, et al. 2009. Determination of partial genomic sequences and development of a CAPS system of the S-RNase gene for the identification of 22 S haplotypes of apple (Malus × domestica Borkh.). Molecular Breeding 23:463−72 doi: 10.1007/s11032-008-9249-4
[15] Matsumoto S, Kitahara K. 2000. Discovery of a new self-incompatibility allele in apple. HortScience 35:1329−32 doi: 10.21273/HORTSCI.35.7.1329
[16] Nybom H, Sehic J, Garkava-Gustavsson L. 2008. Self-incompatibility alleles of 104 apple cultivars grown in northern Europe. The Journal of Horticultural Science and Biotechnology 83:339−44 doi: 10.1080/14620316.2008.11512389
[17] Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, et al. 1996. Self-incompatibility (S) alleles of the rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Molecular and General Genetics 250:547−57 doi: 10.1007/BF02174443
[18] Sheick R, Serra S, Tillman J, Luby J, Evans K, et al. 2020. Characterization of a novel S-RNase allele and genotyping of new apple cultivars. Scientia Horticulturae 273:109630 doi: 10.1016/j.scienta.2020.109630
[19] Larsen B, Ørgaard M, Toldam-Andersen TB, Pedersen C. 2016. A high-throughput method for genotyping S-RNase alleles in apple. Molecular Breeding 36:24 doi: 10.1007/s11032-016-0448-0
[20] De Franceschi P, Bianco L, Cestaro A, Dondini L, Velasco, R. 2018. Characterization of 25 full-length S-RNase alleles, including flanking regions, from a pool of resequenced apple cultivars. Plant Molecular Biology 97:279−96 doi: 10.1007/s11103-018-0741-x
[21] Broothaerts W, Van Nerum I, Keulemans J. 2004. Update on and review of the incompatibility (S-) genotypes of apple cultivars. HortScience 39:943−47 doi: 10.21273/HORTSCI.39.5.943
[22] Morita J, Abe K, Matsumoto S. 2009. S-RNase genotypes of apple cultivars grown in Japan and development of a PCR-RFLP method to identify the S6- and S21-RNase alleles. The Journal of Horticultural Science and Biotechnology 84:29−34 doi: 10.1080/14620316.2009.11512475
[23] Dreesen RSG, Vanholme BTM, Luyten K, Van Wynsberghe L, Fazio G, et al. 2010. Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Molecular Breeding 26:693−709 doi: 10.1007/s11032-010-9405-5
[24] Sassa H, Mase N, Hirano H, Ikehashi H. 1994. Identification of self-incompatibility-related glycoproteins in styles of apple (Malus × domestica). Theoretical and Applied Genetics 89:201−5 doi: 10.1007/BF00225142
[25] Sakurai K, Brown SK, Weeden NF. 1997. Determining the self-incompatibility alleles of Japanese apple cultivars. HortScience 32:1258−59 doi: 10.21273/HORTSCI.32.7.1258
[26] Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W. 1995. A molecular method for S-allele identification in apple based on allele-specific PCR. Theoretical and Applied Genetics 91:691−98 doi: 10.1007/BF00223298
[27] Bošković R, Tobutt KR. 1999. Correlation of stylar ribonuclease isoenzymes with incompatibility alleles in apple. Euphytica 107:29−43 doi: 10.1023/A:1003516902123
[28] Komori S, Soejima J, Abe K, Kotoda N, Kato H. 2000. Analysis of S-allele genotypes and genetic diversity in the apple, In ISHS Acta Horticulturae 538, eds. Geibel M, Fischer M, Fischer C. Dresden, Germany: International Society for Horticultural Science http://doi.org/10.17660/actahortic.2000.538.9
[29] Matsumoto S. 2014. Apple pollination biology for stable and novel fruit production: search system for apple cultivar combination showing incompatibility, semicompatibility, and full-compatibility based on the S-RNase allele database. International Journal of Agronomy 2014:138271 doi: 10.1155/2014/138271
[30] Broothaerts W, Janssens GA, Proost P, Broekaert WF. 1995. cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Molecular Biology 27:499−511 doi: 10.1007/BF00019317
[31] Kitahara K, Matsumoto S. 2002. Cloning of the S25 cDNA from 'McIntosh' apple and an S25-allele identification method. The Journal of Horticultural Science and Biotechnology 77:724−28 doi: 10.1080/14620316.2002.11511563
[32] Matsumoto S, Furusawa Y, Komatsu H, Soejima J, Soejima J. 2015. S-allele genotypes of apple pollenizers, cultivars and lineages including those resistant to scab. The Journal of Horticultural Science and Biotechnology 78:634−37 doi: 10.1080/14620316.2003.11511676
[33] Long S, Li M, Han Z, Wang K, Li T. 2010. Characterization of three new S-alleles and development of an S-allele-specific PCR system for rapidly identifying the S-genotype in apple cultivars. Tree Genetics & Genomes 6:161−68 doi: 10.1007/s11295-009-0237-6
[34] Matsumoto S, Okada K, Kojima A, Shiratake K, Abe K. 2011. S-RNase genotypes of apple (Malus domestica Borkh.) including new cultivars, lineages, and triploid progenies. The Journal of Horticultural Science and Biotechnology 86:654−60 doi: 10.1080/14620316.2011.11512818
[35] Bus VGM, van de Weg WE, Peil A, Dunemann F, Zini E, et al. 2012. The role of Schmidt 'Antonovka' in apple scab resistance breeding. Tree Genetics & Genomes 8:627−42 doi: 10.1007/s11295-012-0470-2
[36] Janick J, Cummins J N, Brown S, Hemmat M. 1996. Apples. in Fruit breeding, Tree and Tropical Fruits, eds. Janick J, Moore NJ, Vol1:632. Hoboken: John Wiley & Sons, Inc.
[37] Brancher TL, Hawerroth MC, Kvitschal MV, Manenti DC, Guidolin AF. 2020. Self-incompatibility alleles in important genotypes for apple breeding in Brazil. Crop Breeding and Applied Biotechnology 20:1−9 doi: 10.1590/1984-70332020v20n4a54
[38] Halász J, Hegedűs A, György Z, Pállinger É, Tóth M. 2011. S-genotyping of old apple cultivars from the Carpathian basin: methodological, breeding and evolutionary aspects. Tree Genetics & Genomes 7:1135−45 doi: 10.1007/s11295-011-0401-7
[39] Laurens F. 1998. Review of the current apple breeding programmes in the world: objectives for scion cultivar improvement. In ISHS Acta Horticulturae 484: Eucarpia Symposium on Fruit Breeding and Genetics, eds. Tobutt KR, Alston FH. Oxford, United Kingdom: International Society for Horticultural Science. pp. 163–70 http://doi.org/10.17660/ActaHortic.1998.484.26
[40] Matsumoto S, Eguchi T, Bessho H, Abe K. 2007. Determination and confirmation of S-RNase genotypes of apple pollinators and cultivars. The Journal of Horticultural Science and Biotechnology 82:323−29 doi: 10.1080/14620316.2007.11512236
[41] Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11−15
[42] Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM, et al. 2013. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology 161:225−39 doi: 10.1104/pp.112.206771
[43] Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106 doi: 10.1038/ng.3886
[44] Du L, Zhang C, Liu Q, Zhang X, Yue B. 2018. Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 34:681−83 doi: 10.1093/bioinformatics/btx665
[45] Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18:233−34 doi: 10.1038/72708
[46] Hulce D, Li X, Snyder-Leiby T, Liu CS. 2011. GeneMarker® genotyping software: tools to increase the statistical power of DNA fragment analysis. Journal of biomolecular techniques 22:S35−S36
[47] Feng DF, Doolittle RF. 1987. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution 25:351−60 doi: 10.1007/BF02603120
[48] Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, et al. 2008. Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353−58 doi: 10.1016/j.ygeno.2008.07.008