[1] |
Wang W, Wang Y, Du Y, Zhao Z, Zhu X, et al. 2014. Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco. Plant Cell Reports 33: 1829-1841 doi: 10.1007/s00299-014-1660-1
|
[2] |
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences 115: E4151-E4158 doi: 10.1073/pnas.1719622115
|
[3] |
Zhong R, Ye Z. 2009. Transcriptional regulation of lignin biosynthesis. Plant Signaling & Behavior 4: 1028-1034 doi: 10.4161/psb.4.11.9875
|
[4] |
Zhao Q, Dixon R. 2011. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends in Plant Science 16: 227-233 doi: 10.1016/j.tplants.2010.12.005
|
[5] |
Wang Y, Wu X, Sun S, Xing G, Wang G, et al. 2018. DcC4H and DcPER are important in dynamic changes of lignin content in carrot roots under elevated carbon dioxide stress. Journal of Agricultural and Food Chemistry 66: 8209-8220 doi: 10.1021/acs.jafc.8b02068
|
[6] |
Wang Y, Gao L, Wang Z, Liu Y, Sun M, et al. 2012. Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 133: 72-83 doi: 10.1016/j.scienta.2011.10.017
|
[7] |
Vanholme R, Storme V, Vanholme B, Sundin L, Christensen J, et al. 2012. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. The Plant Cell 24: 3506-3529 doi: 10.1105/tpc.112.102574
|
[8] |
Li W, Tian Z, Yu D. 2015. WRKY13 acts in stem development in Arabidopsis thaliana. Plant Science 236: 205-213 doi: 10.1016/j.plantsci.2015.04.004
|
[9] |
Lai Z, Vinod K, Zheng Z, Fan B, Chen Z. 2008. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biology 8: 68 doi: 10.1186/1471-2229-8-68
|
[10] |
Li S, Fu Q, Huang W, Yu D. 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Reports 28: 683-693 doi: 10.1007/s00299-008-0666-y
|
[11] |
Vanderauwera S, Vandenbroucke K, Inze A, van de Cotte B, Muhlenbock P, et al. 2012. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109: 20113-20118 doi: 10.1073/pnas.1217516109
|
[12] |
Hu Y, Dong Q, Yu D. 2012. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Science 185-186: 288-297 doi: 10.1016/j.plantsci.2011.12.003
|
[13] |
Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, et al. 2005. Solution structure of an Arabidopsis WRKY DNA binding domain. The Plant Cell 17: 944-956 doi: 10.1105/tpc.104.026435
|
[14] |
Wang H, Hao J, Chen X, Hao Z, Wang X, et al. 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology 65: 799-815 doi: 10.1007/s11103-007-9244-x
|
[15] |
Naoumkina M, He X, Dixon R. 2009. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology 8: 132 doi: 10.1186/1471-2229-8-132
|
[16] |
Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, et al. 2010. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Molecular Biology 72: 215-234 doi: 10.1007/s11103-009-9563-1
|
[17] |
Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature communications 11: 4447 doi: 10.1038/s41467-020-18228-8
|
[18] |
Xia E, Zhang H, Sheng J, Li K, Zhang Q, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10: 866-877 doi: 10.1016/j.molp.2017.04.002
|
[19] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729 doi: 10.1093/molbev/mst197
|
[20] |
Zhang X, Henriques R, Lin S, Niu Q, Chua N. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1: 641-646 doi: 10.1038/nprot.2006.97
|
[21] |
Jefferson RA. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter 5: 387-405 doi: 10.1007/BF02667740
|
[22] |
Cai C, Xu C, Li X, Ferguson I, Chen K. 2006. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biology and Technology 40: 163-169 doi: 10.1016/j.postharvbio.2005.12.009
|
[23] |
Wang G, Huang Y, Zhang X, Xu Z, Wang F, et al. 2016. Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots. Plant Cell Reports 35: 1743-1755 doi: 10.1007/s00299-016-1992-0
|
[24] |
Liu J, Feng K, Wang G, Xu Z, Wang F, et al. 2018. Elevated CO2 induces alteration in lignin accumulation in celery (Apium graveolens L.). Plant Physiology and Biochemistry 127: 310-319 doi: 10.1016/j.plaphy.2018.04.003
|
[25] |
Raes J, Rohde A, Christensen J, Van de Peer Y, Boerjan W. 2003 Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology 133: 1051-1071 doi: 10.1104/pp.103.026484
|
[26] |
Xu Z, Feng K, Que F, Wang F, Xiong AS. 2017. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Scientific Reports 7: 45324 doi: 10.1038/srep45324
|
[27] |
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29: e45 doi: 10.1093/nar/29.9.e45
|
[28] |
Wu Z, Li X, Liu Z, Li H, Wang Y, et al. 2016. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Molecular Genetics and Genomics 291: 255-269 doi: 10.1007/s00438-015-1107-6
|
[29] |
Jiang Y , Duan Y , Yin J , Ye S , Zhu J , et al. 2014. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. Journal of Experimental Botany 65:6629–6644 doi: 10.1093/jxb/eru381
|
[30] |
Alejandro B, Mónica R, Jorge B, Vimal N, Luis C, et al. 2015. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science 6: 837 doi: 10.3389/fpls.2015.00837
|
[31] |
Saidi M, Bouaziz D, Hammami I, Namsi A, Drira N, et al. 2013. Alterations in lignin content and phenylpropanoids pathway in date palm (Phoenix dactylifera L.) tissues affected by brittle leaf disease. Plant Science 211: 8-16 doi: 10.1016/j.plantsci.2013.06.008
|
[32] |
Moura J, Bonine C, de Oliveira Fernandes Viana J, Dornelas M, Mazzafera P. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology 52: 360-376 doi: 10.1111/j.1744-7909.2010.00892.x
|
[33] |
Sun M, Yang X, Zhu Z, Xu Q, Wu K, et al. 2021. Comparative transcriptome analysis provides insight into nitric oxide suppressing lignin accumulation of postharvest okra (Abelmoschus esculentus L.) during cold storage. Plant Physiology and Biochemistry 167: 49-67 doi: 10.1016/j.plaphy.2021.07.029
|
[34] |
Li T, Huang Y, Khadr A, Wang Y, Xu Z, et al. 2020. DcDREB1A, a DREB-binding transcription factor from Daucus carota, enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes. Environmental and Experimental Botany 169: 103896. doi: 10.1016/j.envexpbot.2019.103896
|
[35] |
Khadr A, Wang Y, Que F, Li T, Xu Z, et al. 2020. Exogenous abscisic acid suppresses the lignification and changes the growth, root anatomical structure and related gene profiles of carrot. Acta biochimica et biophysica Sinica 52: 97-100 doi: 10.1093/abbs/gmz138
|
[36] |
Khadr A, Wang G, Wang Y, Zhang R, Wang X, et al. 2020. Effects of auxin (indole-3-butyric acid) on growth characteristics, lignification, and expression profiles of genes involved in lignin biosynthesis in carrot taproot. PeerJ 8: e10492 doi: 10.7717/peerj.10492
|
[37] |
Duan A, Tao J, Jia L, Tan G, Xiong AS. 2020. AgNAC1, a celery transcription factor, related to regulation on lignin biosynthesis and salt tolerance. Genomics 112: 5254-5264 doi: 10.1016/j.ygeno.2020.09.049
|
[38] |
Eulgem T, Rushton P, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5: 199-206 doi: 10.1016/S1360-1385(00)01600-9
|
[39] |
Bakshi M, Oelmüller R. 2014. WRKY transcription factors: Jack of many trades in plants. Plant Signaling & Behavior 9: e27700 doi: 10.4161/psb.27700
|
[40] |
Yang L, Zhao X, Yang F, Fan D, Jiang Y, et al. 2016. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa. Scientific Reports 6: 18643 doi: 10.1038/srep18643
|
[41] |
Wang H, Avci U, Nakashima J, Hahn M, Chen F, et al. 2010. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences 107: 22338-22343 doi: 10.1073/pnas.1016436107
|
[42] |
Yu Y, Hu R, Wang H, Cao Y, He G, et al. 2013. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering. Plant science 212: 1-9 doi: 10.1016/j.plantsci.2013.07.010
|