[1] |
Hung HC, Joshipura KJ, Jiang R, Hu FB, Hunter D, et al. 2004. Fruit and vegetable intake and risk of major chronic disease. Journal of the National Cancer Institute 96:1577−84 doi: 10.1093/jnci/djh296
|
[2] |
Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, et al. 2017. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology 46:1029−56 doi: 10.1093/ije/dyw319
|
[3] |
Slavin JL, Lloyd B. 2012. Health benefits of fruits and vegetables. Advances in Nutrition 3:506−516 doi: 10.3945/an.112.002154
|
[4] |
Martin C, Li J. 2017. Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. New Phytologist 216:699−719 doi: 10.1111/nph.14730
|
[5] |
Thakur N, Raigond P, Singh Y, Mishra T, Singh B, et al. 2020. Recent updates on bioaccessibility of phytonutrients. Trends in Food Science & Technology 97:366−80 doi: 10.1016/j.jpgs.2020.01.019
|
[6] |
Kuhn BM, Geisler M, Bigler L, Ringli C. 2011. Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiology 156:585−95 doi: 10.1104/pp.111.175976
|
[7] |
Muhlemann JK, Younts TLB, Muday GK. 2018. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proceedings of the National Academy of Sciences USA 115:E11188−E11197 doi: 10.1073/pnas.1811492115
|
[8] |
Silva-Navas J, Moreno-Risueno MA, Manzano C, Téllez-Robledo B, Navarro-Neila S, et al. 2016. Flavonols mediate root phototropism and growth through regulation of proliferation-to-differentiation transition. The Plant Cell 28:1372−87 doi: 10.1105/tpc.15.00857
|
[9] |
Henry-Kirk RA, Plunkett B, Hall M, McGhie T, Allan AC, et al. 2018. Solar UV light regulates flavonoid metabolism in apple (Malus × domestica). Plant, Cell & Environment 41:675−88 doi: 10.1111/pce.13125
|
[10] |
Xie L, Cao Y, Zhao Z, Ren C, Xing M, et al. 2020. Involvement of MdUGT75B1 and MdUGT71B1 in flavonol galactoside/glucoside biosynthesis in apple fruit. Food Chemistry 312:126124 doi: 10.1016/j.foodchem.2019.126124
|
[11] |
Zhang X, Huang H, Zhang Q, Fan F, Xu C, et al. 2015. Phytochemical characterization of Chinese bayberry (Myrica rubra Sieb. et Zucc.) of 17 cultivars and their antioxidant properties. International Journal of Molecular Sciences 16:12467−81 doi: 10.3390/ijms160612467
|
[12] |
Phillips PA, Sangwan V, Borja-Cacho D, Dudeja V, Vickers SM, et al. 2011. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Letters 308:181−88 doi: 10.1016/j.canlet.2011.05.002
|
[13] |
Williams LK, Zhang X, Caner S, Tysoe C, Nguyen NT, et al. 2015. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Nature Chemical Biology 11:691−96 doi: 10.1038/nchembio.1865
|
[14] |
Kothari D, Lee WD, Kim SK. 2020. Allium flavonols: Health benefits, molecular targets, and bioavailability. Antioxidants 9:888 doi: 10.3390/antiox9090888
|
[15] |
Barreca D, Trombetta D, Smeriglio A, Mandalari G, Romeo O, et al. 2021. Food flavonols: Nutraceuticals with complex health benefits and functionalities. Trends in Food Science & Technology In Press doi: 10.1016/j.jpgs.2021.03.030
|
[16] |
Aherne SA, O'Brien NM. 2002. Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18:75−81 doi: 10.1016/S0899-9007(01)00695-5
|
[17] |
Jin Q, Yang J, Ma L, Cai J, Li J. 2015. Comparison of polyphenol profile and inhibitory activities against oxidation and α-glucosidase in mulberry (Genus Morus) cultivars from China. Journal of Food Science 80:C2440−C2451 doi: 10.1111/1750-3841.13099
|
[18] |
Vrhovsek U, Masuero D, Palmieri L, Mattivi F. 2012. Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. Journal of Food Composition and Analysis 25:9−16 doi: 10.1016/j.jfca.2011.04.015
|
[19] |
Fang F, Tang K, Huang W. 2013. Changes of flavonol synthase and flavonol contents during grape berry development. European Food Research and Technology 237:529−40 doi: 10.1007/s00217-013-2020-z
|
[20] |
Pavlović AV, Dabić DČ, Momirović NM, Dojčinović BP, Milojković-Opsenica DM, et al. 2013. Chemical composition of two different extracts of berries harvested in Serbia. Journal of Agricultural and Food ChemIstry 61:4188−94 doi: 10.1021/jf400607f
|
[21] |
Kolniak-Ostek J. 2016. Identification and quantification of polyphenolic compounds in ten pear cultivars by UPLC-PDA-Q/TOF-MS. Journal of Food Composition and Analysis 49:65−77 doi: 10.1016/j.jfca.2016.04.004
|
[22] |
Cao Y, Xie L, Ma Y, Ren C, Xing M, et al. 2019. PpMYB15 and PpMYBF1 transcription factors are involved in regulating flavonol biosynthesis in peach Fruit. Journal of Agricultural and Food Chemistry 67:644−52 doi: 10.1021/acs.jafc.8b04810
|
[23] |
Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I. 2010. Flavonol profiles of Vitis vinifera white grape cultivars. Journal of Food Composition and Analysis 23:699−705 doi: 10.1016/j.jfca.2010.03.017
|
[24] |
Griesser M, Vitzthum F, Fink B, Bellido ML, Raasch C, et al. 2008. Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria × ananassa) achene and receptacle. Journal of Experimental Botany 59:2611−25 doi: 10.1093/jxb/ern117
|
[25] |
De Rosso M, Panighel A, Vedova AD, Gardiman M, Flamini R. 2015. Characterization of non-anthocyanic flavonoids in some hybrid red grape extracts potentially interesting for industrial uses. Molecules 20:18095−106 doi: 10.3390/molecules201018095
|
[26] |
Berardini N, Fezer R, Conrad J, Beifuss U, Carle R, et al. 2005. Screening of mango (Mangifera indica L.) cultivars for their contents of flavonol O- and xanthone C-glycosides, anthocyanins, and pectin. Journal of Agricultural and Food Chemistry 53:1563−70 doi: 10.1021/jf0484069
|
[27] |
Prinz S, Ringl A, Huefner A, Pemp E, Kopp B. 2007. 4’’’-Acetylvitexin-2’’-O-rhamnoside, isoorientin, orientin, and 8-methoxykaempferol-3-O-glucoside as markers for the differentiation of Crataegus monogyna and Crataegus pentagyna from Crataegus laevigata (Rosaceae). Chemistry & Biodiversity 4:2920−31 doi: 10.1002/cbdv.200790241
|
[28] |
Scordino M, Sabatino L, Muratore A, Belligno A, Gagliano G. 2012. Phenolic characterization of Sicilian yellow flesh peach (Prunus persica L.) cultivars at different ripening stages. Journal of Food Quality 35:255−62 doi: 10.1111/j.1745-4557.2012.00452.x
|
[29] |
Smrke T, Persic M, Veberic R, Sircelj H, Jakopic J. 2019. Influence of reflective foil on persimmon (Diospyros kaki Thunb.) fruit peel colour and selected bioactive compounds. Scientific Reports 9:19069 doi: 10.1038/s41598-019-55735-1
|
[30] |
Aoyama H, Sakagami H, Hatano T. 2018. Three new flavonoids, proanthocyanidin, and accompanying phenolic constituents from Feijoa sellowiana. Bioscience, Biotechnology, and Biochemistry 82:31−41 doi: 10.1080/09168451.2017.1412246
|
[31] |
Yang X, Kang SM, Jeon BT, Kim YD, Ha JH, et al. 2011. Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. Journal of the Science of Food and Agriculture 91:1925−1927 doi: 10.1002/jsfa.4402
|
[32] |
Itoigawa M, Takeya K, Furukawa H. 1994. Cardiotonic flavonoids from Citrus plants (Rutaceae). Biological and Pharmaceutical Bulletin 17:1519−21 doi: 10.1248/bpb.17.1519
|
[33] |
Yu M, Man Y, Lei R, Lu X, Wang Y. 2020. Metabolomics study of flavonoids and anthocyanin-related gene analysis in kiwifruit (Actinidia chinensis) and kiwiberry (Actinidia arguta). Plant Molecular Biology Reporter 38:353−69 doi: 10.1007/s11105-020-01200-7
|
[34] |
Dauguet J, Bert M, Dolley J, Bekaert A, Lewin G. 1993. 8-Methoxykaempferol 3-neohesperidoside and other flavonoids from bee pollen of Crataegus monogyna. Phytochemistry 33:1503−05 doi: 10.1016/0031-9422(93)85121-7
|
[35] |
Wang F, Ge S, Xu X, Xing Y, Du X, et al. 2021. Multiomics analysis reveals new insights into the apple fruit quality decline under high nitrogen conditions. Journal of Agricultural and Food Chemistry 69:5559−5572 doi: 10.1021/acs.jafc.1c01548
|
[36] |
Premathilake AT, Ni J, Bai S, Tao R, Ahmad M, et al. 2020. R2R3-MYB transcription factor PpMYB17 positively regulates flavonoid biosynthesis in pear fruit. Planta 252:59 doi: 10.1007/s00425-020-03473-4
|
[37] |
Zhai R, Zhao Y, Wu M, Yang J, Li X, et al. 2019. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biology 19:85 doi: 10.1186/s12870-019-1687-0
|
[38] |
Wang X, Cao X, Shang Y, Bu H, Wang T, et al. 2020. Preharvest application of prohydrojasmon affects color development, phenolic metabolism, and pigment-related gene expression in red pear (Pyrus ussuriensis). Journal of the Science of Food and Agriculture 100:4766−75 doi: 10.1002/jsfa.10535
|
[39] |
Ferreres F, Gomes D, Valentão P, Gonçalves R, Pio R, et al. 2009. Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chemistry 114:1019−27 doi: 10.1016/j.foodchem.2008.10.065
|
[40] |
Zhang W, Zhao X, Sun C, Li X, Chen K. 2015. Phenolic composition from different loquat (Eriobotrya japonica Lindl.) cultivars grown in China and their antioxidant properties. Molecules 20:542−55 doi: 10.3390/molecules20010542
|
[41] |
Chen H, Yang J, Deng X, Lei Y, Xie S, et al. 2020. Foliar-sprayed manganese sulfate improves flavonoid content in grape berry skin of Cabernet Sauvignon (Vitis vinifera L.) growing on alkaline soil and wine chromatic characteristics. Food Chemistry 314:126182 doi: 10.1016/j.foodchem.2020.126182
|
[42] |
Yang N, Qiu R, Yang S, Zhou K, Wang C, et al. 2019. Influences of stir-frying and baking on flavonoid profile, antioxidant property, and hydroxymethylfurfural formation during preparation of blueberry-filled pastries. Food Chemistry 287:167−75 doi: 10.1016/j.foodchem.2019.02.053
|
[43] |
Lyu Q, Wen X, Liu Y, Sun C, Chen K, et al. 2021. Comprehensive profiling of phenolic compounds in white and red Chinese bayberries (Morella rubra Sieb. et Zucc.) and their developmental variations using tandem mass spectral molecular networking. Journal of Agricultural and Food Chemistry 69:741−49 doi: 10.1021/acs.jafc.0c04117
|
[44] |
Simirgiotis MJ, Schmeda-Hirschmann G. 2010. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. Journal of Food Composition and Analysis 23:545−53 doi: 10.1016/j.jfca.2009.08.020
|
[45] |
Cao J, Jiang Q, Lin J, Li X, Sun C, et al. 2015. Physicochemical characterisation of four cherry species (Prunus spp.) grown in China. Food Chemistry 173:855−63 doi: 10.1016/j.foodchem.2014.10.094
|
[46] |
Luo J, Butelli E, Hill L, Parr A, Niggeweg R, et al. 2008. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. The Plant Journal 56:316−26 doi: 10.1111/j.1365-313X.2008.03597.x
|
[47] |
Lijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, et al. 2008. Metabolite annotations based on the integration of mass spectral information. The Plant Journal 54:949−62 doi: 10.1111/j.1365-313X.2008.03434.x
|
[48] |
Li Y, Chen M, Wang S, Ning J, Ding X, et al. 2015. AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco. Plant Cell, Tissue and Organ Culture 122:309−319 doi: 10.1007/s11240-015-0767-6
|
[49] |
Lv Q, Si M, Yan Y, Luo F, Hu G, et al. 2014. Effects of phenolic-rich litchi (Litchi chinensis Sonn.) pulp extracts on glucose consumption in human HepG2 cells. Journal of Functional Foods 7:621−629 doi: 10.1016/j.jff.2013.12.023
|
[50] |
Lyu Q, Kuo T, Sun C, Chen K, Hsu CC, et al. 2019. Comprehensive structural characterization of phenolics in litchi pulp using tandem mass spectral molecular networking. Food Chemistry 282:9−17 doi: 10.1016/j.foodchem.2019.01.001
|
[51] |
Liu X, Lin C, Ma X, Tan Y, Wang J, et al. 2018. Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis). Frontiers in Plant Science 9:166 doi: 10.3389/fpls.2018.00166
|
[52] |
Wang F, Chen L, Chen H, Chen S, Liu Y. 2019. Analysis of Flavonoid metabolites in citrus peels (Citrus reticulata "Dahongpao") using UPLC-ESI-MS/MS. Molecules 24:2680 doi: 10.3390/molecules24152680
|
[53] |
Pandith SA, Dhar N, Rana S, Bhat WW, et al. 2016. Functional promiscuity of two divergent paralogs of type III plant polyketide synthases. Plant Physiology 171:2599−19 doi: 10.1104/pp.16.00003
|
[54] |
Zhao C, Liu X, Gong Q, Cao J, Shen W, et al. 2021. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnology Journal 19:671−688 doi: 10.1111/pbi.13494
|
[55] |
Mameda R, Waki T, Kawai Y, Takahashi S, Nakayama T. 2018. Involvement of chalcone reductase in the soybean isoflavone metabolon: identification of GmCHR5, which interacts with 2-hydroxyisoflavanone synthase. The Plant Journal 96:56−74 doi: 10.1111/tpj.14014
|
[56] |
Kim BG, Kim JH, Kim J, Lee C, Ahn JH. 2008. Accumulation of flavonols in response to ultraviolet-B irradiation in soybean is related to induction of flavanone 3-beta-hydroxylase and flavonol synthase. Molecules and Cells 25:247−52
|
[57] |
Stahlhut SG, Siedler S, Malla S, Harrison SJ, Maury J, et al. 2015. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metabolic Engineering 31:84−93 doi: 10.1016/j.ymben.2015.07.002
|
[58] |
Falcone Ferreyra ML, Rius S, Emiliani J, Pourcel L, Feller A, et al. 2010. Cloning and characterization of a UV-B-inducible maize flavonol synthase. The Plant Journal 62:77−91 doi: 10.1111/j.1365-313X.2010.04133.x
|
[59] |
Toh HC, Wang SY, Chang ST, Chu FH. 2013. Molecular cloning and characterization of flavonol synthase in Acacia confusa. Tree Genetics & Genomes 9:85−92 doi: 10.1007/s11295-012-0536-1
|
[60] |
Thill J, Miosic S, Gotame TP, Mikulic-Petkovsek M, Gosch C, et al. 2013. Differential expression of flavonoid 3’-hydroxylase during fruit development establishes the different B-ring hydroxylation patterns of flavonoids in Fragaria × ananassa and Fragaria vesca. Plant Physiology and Biochemistry 72:72−78 doi: 10.1016/j.plaphy.2013.03.019
|
[61] |
Olsen KM, Hehn A, Jugdé H, Slimestad R, Larbat R, et al. 2010. Identification and characterisation of CYP75A31, a new flavonoid 3’5’-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biology 10:21 doi: 10.1186/1471-2229-10-21
|
[62] |
Xing M, Cao Y, Ren C, Liu Y, Li J, et al. 2021. Elucidation of myricetin biosynthesis in Morella rubra of the Myricaceae. The Plant Journal 108:411−25 doi: 10.1111/tpj.15449
|
[63] |
Liu X, Zhao C, Gong Q, Wang Y, Cao J, et al. 2020. Characterization of a caffeoyl-CoA O-methyltransferase-like enzyme involved in biosynthesis of polymethoxylated flavones in Citrus reticulata. Journal of Experimental Botany 71:3066−79 doi: 10.1093/jxb/eraa083
|
[64] |
Owens DK, McIntosh CA. 2009. Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi. Phytochemistry 70:1382−91 doi: 10.1016/j.phytochem.2009.07.027
|
[65] |
Montefiori M, Espley RV, Stevenson D, Cooney J, Datson PM, et al. 2011. Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis). The Plant Journal 65:106−18 doi: 10.1111/j.1365-313X.2010.04409.x
|
[66] |
Ikegami A, Akagi T, Potter D, Yamada M, Sato A, et al. 2009. Molecular identification of 1-Cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki Thunb). Planta 230:841 doi: 10.1007/s00425-009-0989-0
|
[67] |
Ono E, Homma Y, Horikawa M, Kunikane-Doi S, Imai H, et al. 2010. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). The Plant Cell 22:2856−71 doi: 10.1105/tpc.110.074625
|
[68] |
Song C, Gu L, Liu J, Zhao S, Hong X, et al. 2015. Functional characterization and substrate promiscuity of UGT71 glycosyltransferases from strawberry (Fragaria × ananassa). The Plant Cell Physiology 56:2478−93 doi: 10.1093/pcp/pcv151
|
[69] |
Halbwirth H, Forkmann G, Stich K. 2004. The A-ring specific hydroxylation of flavonols in position 6 in Tagetes sp. is catalyzed by a cytochrome P450 dependent monooxygenase. Plant Science 167:129−35 doi: 10.1016/j.plantsci.2004.03.007
|
[70] |
Halbwirth H, Stich K. 2006. An NADPH and FAD dependent enzyme catalyzes hydroxylation of flavonoids in position 8. Phytochemistry 67:1080−87 doi: 10.1016/j.phytochem.2006.03.008
|
[71] |
Macheix JJ, Ibrahim RK. 1984. The O-methyltransferase system of apple fruit cell suspension culture. Biochemie und Physiologie der Pflanzen 179:659−64 doi: 10.1016/S0015-3796(84)80022-0
|
[72] |
Gomez Roldan MV, Outchkourov N, van Houwelingen A, Lammers M, Romero de la Fuente I, et al. 2014. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato. The Plant Journal 80:695−708 doi: 10.1111/tpj.12664
|
[73] |
Mehrtens F, Kranz H, Bednarek P, Weisshaar B. 2005. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology 138:1083−96 doi: 10.1104/pp.104.058032
|
[74] |
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660−77 doi: 10.1111/j.1365-313X.2007.03078.x
|
[75] |
Wang N, Xu H, Jiang S, Zhang Z, Lu N, et al. 2017. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant Journal 90:276−292 doi: 10.1111/tpj.13487
|
[76] |
Cao Y, Jia H, Xing M, Jin R, Grierson D, et al. 2021. Genome-wide analysis of MYB gene family in Chinese bayberry (Morella rubra) and identification of members regulating flavonoid biosynthesis. Frontiers in Plant Science 12:691384 doi: 10.3389/fpls.2021.691384
|
[77] |
Aharoni A, De Vos CHR, Wein M, Sun Z, Greco R, et al. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal 28:319−32 doi: 10.1046/j.1365-313X.2001.01154.x
|
[78] |
Vimolmangkang S, Han Y, Wei G, Korban SS. 2013. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biology 13:176 doi: 10.1186/1471-2229-13-176
|
[79] |
Zhai R, Wang Z, Zhang S, Meng G, Song L, et al. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). Journal of Experimental Botany 67:1275−84 doi: 10.1093/jxb/erv524
|
[80] |
Lu BY, Hao S, Bu Y, Yang S, Zhang J, et al. 2017. McMYB10 regulates anthocyanins and quercetin accumulation during the fruit development of crabapples. The Journal of Horticultural Science and Biotechnology 92:358−66 doi: 10.1080/14620316.2017.1301786
|
[81] |
Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, Bogs J, Moser C. 2016. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany 67:3509−22 doi: 10.1093/jxb/erw181
|
[82] |
Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV. 2019. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. Journal of Experimental Botany 70:4775−92 doi: 10.1093/jxb/erz264
|
[83] |
Li H, Li Y, Yu J, Wu T, Zhang J, Tian J, et al. 2020. MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple. Horticulture Research 7:19 doi: 10.1038/s41438-020-0238-z
|
[84] |
Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, et al. 2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology 140:499−511 doi: 10.1104/pp.105.067231
|
[85] |
Matus JT, Loyola R, Vega A, Peña-Neira A, Bordeu E, et al. 2009. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany 60:853−67 doi: 10.1093/jxb/ern336
|
[86] |
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, et al. 2009. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiology 151:1513−30 doi: 10.1104/pp.109.142059
|
[87] |
Niu TQ, Gao ZD, Zhang PF, Zhang XJ, Gao MY, et al. 2016. MYBA2 gene involved in anthocyanin and flavonol biosynthesis pathways in grapevine. Genetics and Molecular Research 15:gmr15048922 doi: 10.4238/gmr15048922
|
[88] |
Ballester AR, Molthoff J, de Vos R, Hekkert BtL, Orzaez D, et al. 2010. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology 152:71−84 doi: 10.1104/pp.109.147322
|
[89] |
Liu C, Long J, Zhu K, Liu L, Yang W, et al. 2016. Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis. Scientific Reports 6:25352 doi: 10.1038/srep25352
|
[90] |
Feng F, Li M, Ma F, Cheng L. 2013. Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiology and Biochemistry 69:54−61 doi: 10.1016/j.plaphy.2013.04.020
|
[91] |
Sun R, Cheng G, Li Q, He Y, Wang Y, et al. 2017. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Frontiers in Plant Science 8:547 doi: 10.3389/fpls.2017.00547
|
[92] |
Wang Y, Lu Y, Hao S, Zhang M, Zhang J, et al. 2015. Different coloration patterns between the red- and white-fleshed fruits of malus crabapples. Scientia Horticulturae 194:26−33 doi: 10.1016/j.scienta.2015.07.041
|
[93] |
Azuma A, Yakushiji H, Koshita Y, Kobayashi S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067−80 doi: 10.1007/s00425-012-1650-x
|
[94] |
Liu L, Gregan SM, Winefield C, Jordan B. 2018. Comparisons of controlled environment and vineyard experiments in Sauvignon blanc grapes reveal similar UV-B signal transduction pathways for flavonol biosynthesis. Plant Science 276:44−53 doi: 10.1016/j.plantsci.2018.08.003
|
[95] |
Liu L, Gregan S, Winefield C, Jordan B. 2015. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant, Cell & Environment 38:905−19 doi: 10.1111/pce.12349
|
[96] |
Wang CY, Chen CT, Wang SY. 2009. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry 117:426−31 doi: 10.1016/j.foodchem.2009.04.037
|
[97] |
Crupi P, Pichierri A, Basile T, Antonacci D. 2013. Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions. Food Chemistry 141:802−8 doi: 10.1016/j.foodchem.2013.03.055
|
[98] |
Xu Y, Charles MT, Luo Z, Mimee B, Veronneau PY, et al. 2017. Preharvest ultraviolet C irradiation increased the level of polyphenol accumulation and flavonoid pathway gene expression in strawberry fruit. Journal of Agricultural and Food Chemistry 65:9970−79 doi: 10.1021/acs.jafc.7b04252
|
[99] |
Wang SY, Bowman L, Ding M. 2008. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chemistry 107:1261−69 doi: 10.1016/j.foodchem.2007.09.065
|
[100] |
Zhang Y, Zhang J, Song T, Li J, Tian J, et al. 2014. Low medium pH value enhances anthocyanin accumulation in Malus crabapple leaves. PLoS One 9:e97904 doi: 10.1371/journal.pone.0097904
|
[101] |
Zheng J, An Y, Wang L. 2018. 24-Epibrassinolide enhances 5-ALA-induced anthocyanin and flavonol accumulation in calli of 'Fuji' apple flesh. Plant Cell, Tissue and Organ Culture 134:319−30 doi: 10.1007/s11240-018-1418-5
|
[102] |
Reay PF, Lancaster JE. 2001. Accumulation of anthocyanins and quercetin glycosides in 'Gala' and 'Royal Gala' apple fruit skin with UV-B-visible irradiation: modifying effects of fruit maturity, fruit side, and temperature. Scientia Horticulturae 90:57−68 doi: 10.1016/S0304-4238(00)00247-8
|
[103] |
Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, et al. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology 19:470−74 doi: 10.1038/88150
|
[104] |
Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, et al. 2015. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications 6:8635 doi: 10.1038/ncomms9635
|
[105] |
Miyahisa I, Funa N, Ohnishi Y, Martens S, Moriguchi T, et al. 2006. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Applied Microbiology and Biotechnology 71:53−58 doi: 10.1007/s00253-005-0116-5
|
[106] |
Rodriguez A, Strucko T, Stahlhut SG, Kristensen M, Svenssen DK, et al. 2017. Metabolic engineering of yeast for fermentative production of flavonoids. Bioresource Technology 245:1645−54 doi: 10.1016/j.biortech.2017.06.043
|