[1] |
Thompson DW, Bainbridge D. 1917. On growth and form. Cambridge, UK: Cambridge University Press
|
[2] |
Medawar PB. 1941. The 'laws' of biological growth. Nature 148:772−74 doi: 10.1038/148772a0
|
[3] |
West GB, Brown JH, Enquist BJ. 2001. A general model for ontogenetic growth. Nature 413:628−63 doi: 10.1038/35098076
|
[4] |
Maitra A, Dill KA. 2015. Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proceedings of the National Academy of Sciences of the United States of America 112:406−11 doi: 10.1073/pnas.1421138111
|
[5] |
Zeide B. 1993. Analysis of growth equations. Forest Science 39:594−616 doi: 10.1093/forestscience/39.3.594
|
[6] |
Kajimoto T, Hitsuma G, Masaki T, Kanazashi T. 2006. Growth pattern analysis and stemwood production in an unmanaged old plantation of hiba, Thujopsis dolabrata, in northern Japan. Journal of Forest Research 11:107−16 doi: 10.1007/s10310-005-0193-4
|
[7] |
Bradshaw HD Jr, Stettler RF. 1995. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963−73 doi: 10.1093/genetics/139.2.963
|
[8] |
Grattapaglia D, Plomion C, Kirst M, Sederoff RR. 2009. Genomics of growth traits in forest trees. Current Opinion in Plant Biology 12:148−56 doi: 10.1016/j.pbi.2008.12.008
|
[9] |
Bartholomé J, Salmon F, Vigneron P, Bouvet JM, Plomion C, et al. 2013. Plasticity of primary and secondary growth dynamics in Eucalyptus hybrids: a quantitative genetics and QTL mapping perspective. BMC Plant Biology 13:120 doi: 10.1186/1471-2229-13-120
|
[10] |
Zeng Y, Ye S, Yu W, Wu S, Hou W, et al. 2014. Genetic linkage map construction and QTL identification of juvenile growth traits in Torreya grandis. BMC Genetics 15:S2 doi: 10.1186/1471-2156-15-S1-S2
|
[11] |
Costes E, Gion JM. 2015. Genetics and Genomics of tree architecture. Advances in Botanical Research 74:157−200 doi: 10.1016/bs.abr.2015.05.001
|
[12] |
Jiang L, Ye M, Zhu S, Zhai Y, Xu M, et al. 2016. Computational identification of genes modulating stem height-diameter allometry. Plant Biotechnology Journal 14:2254−64 doi: 10.1111/pbi.12579
|
[13] |
Yang Y, Xuan L, Yu C, Wang Z, Xu J, et al. 2018. High-density genetic map construction and quantitative trait loci identification for growth traits in (Taxodium distichum var. distichum × T. mucronatum) × T. mucronatum. BMC Plant Biology 18:263 doi: 10.1186/s12870-018-1493-0
|
[14] |
Ma C, Casella G, Wu R. 2002. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161:1751−62 doi: 10.1093/genetics/161.4.1751
|
[15] |
Wu R, Ma C, Lin M, Casella G. 2004. A general framework for analyzing the genetic architecture of developmental characteristics. Genetics 166:1541−51 doi: 10.1534/genetics.166.3.1541
|
[16] |
Wu R, Lin M. 2006. Functional mapping — how to map and study the genetic architecture of dynamic complex traits. Nature Reviews Genetics 7:229−37 doi: 10.1038/nrg1804
|
[17] |
Das K, Li J, Wang Z, Tong C, Fu G, et al. 2011. A dynamic model for genome-wide association studies. Human Genetics 129:629−39 doi: 10.1007/s00439-011-0960-6
|
[18] |
Li Z, Sillanpää MJ. 2015. Dynamic quantitative trait locus analysis of plant phenomic data. Trends in Plant Science 20:822−33 doi: 10.1016/j.tplants.2015.08.012
|
[19] |
Camargo AV, Mackay I, Mott R, Han J, Doonan JH, et al. 2018. Functional mapping of quantitative trait loci (QTLs) associated with plant performance in a wheat MAGIC mapping population. Frontiers in Plant Science 9:887 doi: 10.3389/fpls.2018.00887
|
[20] |
Lyra DH, Virlet N, Sadeghi-Tehran P, Hassall KL, Wingen LU, et al. 2020. Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform. Journal of Experimental Botany 71:1885−98 doi: 10.1093/jxb/erz545
|
[21] |
Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: From polygenic to omnigenic. Cell 169:1177−86 doi: 10.1016/j.cell.2017.05.038
|
[22] |
Sackton TB, Hartl DL. 2016. Genotypic context and epistasis in individuals and populations. Cell 166:279−87 doi: 10.1016/j.cell.2016.06.047
|
[23] |
Ehrenreich IM. 2017. Epistasis: Searching for interacting genetic variants using crosses. Genetics 7:1619−22 doi: 10.1534/genetics.117.203059
|
[24] |
Forsberg SKG, Bloom JS, Sadhu MJ, Kruglyak L, Carlborg Ö. 2017. Accounting for genetic interactions improves modeling of individual quantitative trait phenotypes in yeast. Nature Genetics 49:497−503 doi: 10.1038/ng.3800
|
[25] |
Costanzo M, Kuzmin E, van Leeuwen J, Mair B, Moffat J, et al. 2019. Global genetic networks and the genotype-to-phenotype relationship. Cell 177:85−100 doi: 10.1016/j.cell.2019.01.033
|
[26] |
Bateson W. 1906. The progress of genetics since the rediscovery of Mendel’s paper. Progressus Rei Botanicae 1:368−82
|
[27] |
Pang X, Wang Z, Yap JS, Wang J, Zhu J, et al. 2013. A statistical procedure to map high-order epistasis for complex traits. Briefings in Bioinformatics 14:302−14 doi: 10.1093/bib/bbs027
|
[28] |
Zuk O, Hechter E, Sunyaev SR, Lander ES. 2012. The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences of the United States of America 109:1193−98 doi: 10.1073/pnas.1119675109
|
[29] |
Sun L, Dong A, Griffin C, Wu R. 2021. Statistical mechanics of clock gene networks underlying circadian rhythms. Applied Physics Reviews 8:021313 doi: 10.1063/5.0029993
|
[30] |
Wu R, Jiang L. 2021. Recovering dynamic networks in big static datasets. Physics Reports 912:1−57 doi: 10.1016/j.physrep.2021.01.003
|
[31] |
Wang H, Ye M, Fu Y, Dong A, Zhang M, et al. 2021. Modeling genome-wide by environment interactions through omnigenic interactome networks. Cell Reports 35:109114 doi: 10.1016/j.celrep.2021.109114
|
[32] |
Yang D, Jin Y, He X, Dong A, Wang J, et al. 2021. Inferring multilayer interactome networks shaping phenotypic plasticity and evolution. Nature Communications 12:5304 doi: 10.1038/s41467-021-25086-5
|
[33] |
Dong A, Feng L, Yang D, Wu S, Zhao J, et al. 2021. FunGraph: A statistical protocol to reconstruct omnigenic multilayer interactome networks for compelx traits. STAR Protocols (accepted)
|
[34] |
Vijesh N, Chakrabarti SK, Sreekumar J. 2013. Modeling of gene regulatory networks: A review. Journal of Biomedical Science and Engineering 6:223−31 doi: 10.4236/jbise.2013.62A027
|
[35] |
Wang YXR, Huang H. 2014. Review on statistical methods for gene network reconstruction using expression data. Journal of Theoretical Biology 362:53−61 doi: 10.1016/j.jtbi.2014.03.040
|
[36] |
Huynh-Thu VA, Sanguinetti G. 2019. Gene regulatory network inference: an introductory survey. In Gene Regulatory Networks, eds. Sanguinetti G, Huynh-Thu VA, 1883: XI, 430. New York: Humana Press. pp. 1−23 https://doi.org/10.1007/978-1-4939-8882-2_1
|
[37] |
Chen C, Jiang L, Fu G, Wang M, Wang Y, et al. 2019. An omnidirectional visualization model of personalized gene regulatory networks. npj Systems Biology and Applications 5:38 doi: 10.1038/s41540-019-0116-1
|
[38] |
Smith JM, Price GR. 1973. The logic of animal conflict. Nature 246:15−8 doi: 10.1038/246015a0
|
[39] |
Jiang L, Xu J, Sang M, Zhang Y, Ye M, et al. 2019. A drive to driven model of mapping intraspecific interaction networks. iScience 22:109−22 doi: 10.1016/j.isci.2019.11.002
|
[40] |
Zhao W, Hou W, Littell RC, Wu R. 2005. Structured antedependence models for functional mapping of multiple longitudinal traits. Statistical Applications in Genetics and Molecular Biology 4:33 doi: 10.2202/1544-6115.1136
|
[41] |
Zimmerman DL, Núñez-Antón V, Gregoire TG, Schabenberger O, Hart JD, et al. 2001. Parametric modelling of growth curve data: An overview. Test 10:1−73 doi: 10.1007/bf02595823
|
[42] |
Zhao W, Wu R, Ma C, Casella G. 2004. A fast algorithm for functional mapping of complex traits. Genetics 167:2133−37 doi: 10.1534/genetics.103.024844
|
[43] |
Busiello DM, Suweis S, Hidalgo J, Maritan A. 2017. Explorability and the origin of network sparsity in living systems. Scientific Reports 7:12323 doi: 10.1038/s41598-017-12521-1
|
[44] |
Allesina S, Tang S. 2012. Stability criteria for complex ecosystems. Nature 483:205−8 doi: 10.1038/nature10832
|
[45] |
Kim BR, Zhang L, Berg A, Fan J, Wu R. 2008. A computational approach to the functional clustering of periodic gene-expression profiles. Genetics 180:821−34 doi: 10.1534/genetics.108.093690
|
[46] |
Wang Y, Xu M, Wang Z, Tao M, Zhu J, et al. 2012. How to cluster gene expression dynamics in response to environmental signals. Briefings in Bioinformatics 13:162−74 doi: 10.1093/bib/bbr032
|
[47] |
Qiu Q, Ma T, Hu Q, Liu B, Wu Y, et al. 2011. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiology 31:452−61 doi: 10.1093/treephys/tpr015
|
[48] |
Zhang M, Bo W, Xu F, Li H, Ye M, et al. 2017. The genetic architecture of shoot-root covariation during seedling emergence of a desert tree, Populus euphratica. The Plant Journal 90:918−28 doi: 10.1111/tpj.13518
|
[49] |
Russell EW, Wild A. 1988. Russell's soil conditions and plant growth, Eleventh Edition. ed. Wild A. Harlow: Longman Scientific and Technical
|
[50] |
Shannon MC, Grieve CM. 1998. Tolerance of vegetable crops to salinity. Scientia Horticulturae 78:5−38 doi: 10.1016/S0304-4238(98)00189-7
|
[51] |
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747−53 doi: 10.1038/nature08494
|
[52] |
Bourrat P, Lu Q, Jablonka E. 2017. Why the missing heritability might not be in the DNA. BioEssays 39:1700067 doi: 10.1002/bies.201700067
|
[53] |
Civelek M, Lusis AJ. 2014. Systems genetics approaches to understand complex traits. Nature Reviews Genetics 15:34−48 doi: 10.1038/nrg3575
|