[1] |
Lannoo N, Van Damme EJM. 2015. Review/N-glycans: The making of a varied toolbox. Plant Science 239:67−83 doi: 10.1016/j.plantsci.2015.06.023
|
[2] |
Strasser R. 2016. Plant protein glycosylation. Glycobiology 26:926−39 doi: 10.1093/glycob/cww023
|
[3] |
Maeda M, Kimura Y. 2014. Structural features of free N-glycans occurring in plants and functional features of de-N-glycosylation enzymes, ENGase, and PNGase: the presence of unusual plant complex type N-glycans. Frontiers in Plant Science 5:429 doi: 10.3389/fpls.2014.00429
|
[4] |
De Coninck T, Gistelinck K, van Rensburg HCJ, Van den Ende W, Van Damme EJM. 2021. Sweet modifications modulate plant development. Biomolecules 11:756 doi: 10.3390/biom11050756
|
[5] |
Boisson M, Gomord V, Audran C, Berger N, Dubreucq B, et al. 2001. Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. The EMBO Journal 20:1010−19 doi: 10.1093/emboj/20.5.1010
|
[6] |
Wang S, Xu Y, Li Z, Zhang S, Lim JM. 2014. OsMOGS is required for N-glycan formation and auxin-mediated root development in rice (Oryza sativa L.). The Plant Journal 78:632−45 doi: 10.1111/tpj.12497
|
[7] |
Liebminger E, Hüttner S, Vavra U, Fischl R, Schoberer J, et al. 2009. Class I α-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. The Plant Cell 21:3850−67 doi: 10.1105/tpc.109.072363
|
[8] |
Ghosh S, Meli VS, Kumar A, Thakur A, Chakraborty N, et al. 2011. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum. Journal of Experimental Botany 62:571−82 doi: 10.1093/jxb/erq289
|
[9] |
Jagadeesh BH, Prabha TN, Srinivasan K. 2004. Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell capsicum (Capsicum annuum var. variata). Plant Science 167:1263−71 doi: 10.1016/j.plantsci.2004.06.031
|
[10] |
Jagadeesh BH, Prabha TN, Srinivasan K. 2004. Activities of glycosidases during fruit development and ripening of tomato (Lycopersicum esculantum L.): Implication in fruit ripening. Plant Science 166:1451−59 doi: 10.1016/j.plantsci.2004.01.028
|
[11] |
Dorairaj D, Puthusseri B, Shetty NP. 2020. Suppression of N-glycan processing enzymes by deoxynojirimycin in tomato (Solanum lycopersicum) fruit. 3 Biotech 10:218 doi: 10.1007/s13205-020-02196-3
|
[12] |
Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, et al. 2010. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. PNAS 107:2413−18 doi: 10.1073/pnas.0909329107
|
[13] |
Serra S, Anthony B, Masia A, Giovannini D, Musacchi S. 2020. Determination of biochemical composition in peach (Prunus persica L. Batsch) accessions characterized by different flesh color and textural typologies. Foods 9:1452 doi: 10.3390/foods9101452
|
[14] |
Cao L, Zhao C, Su S, Luo C, Han M. 2014. The role of β-hexosaminidase in peach (Prunus persica) fruit softening. Scientia Horticulturae 169:226−33 doi: 10.1016/j.scienta.2014.02.015
|
[15] |
Wang M, Zhang X, Guo R, Cai Z, Hu X, et al. 2018. Cloning, purification and biochemical characterization of two β-N-acetylhexosaminidases from the mucin-degrading gut bacterium Akkermansia muciniphila. Carbohydrate Research 457:1−7 doi: 10.1016/j.carres.2017.12.007
|
[16] |
Du Y, Xia T, Gu X, Wang T, Ma H, et al. 2015. Rapid sample preparation methodology for plant N-glycan analysis using acid-stable PNGase H+. Journal of Agricultural and Food Chemistry 63:10550−55 doi: 10.1021/acs.jafc.5b03633
|
[17] |
Guo R, Comamala G, Yang H, Gramlich M, Du Y, et al. 2020. Discovery of highly active recombinant PNGase H+ variants through the rational exploration of unstudied acidobacterial genomes. Frontiers in Bioengineering and Biotechnology 8:741 doi: 10.3389/fbioe.2020.00741
|
[18] |
Zhang Y, Ghirardello M, Wang T, Lu A, Liu L, et al. 2021. Imidazolium labelling permits the sensitive mass-spectrometric detection of N-glycosides directly from serum. Chemical Communications 57:7003−6 doi: 10.1039/D1CC02100A
|
[19] |
Wang T, Hu X, Cai Z, Voglmeir J, Liu L. 2017. Qualitative and quantitative analysis of carbohydrate modification on glycoproteins from seeds of Ginkgo biloba. Journal of Agricultural and Food Chemistry 65:7669−79 doi: 10.1021/acs.jafc.7b01690
|
[20] |
Ceroni A, Maass K, Geyer H, Geyer R, Dell A, et al. 2008. GlycoWorkbench: A tool for the computer-assisted annotation of mass spectra of glycans. Journal of Proteome Research 7:1650−59 doi: 10.1021/pr7008252
|
[21] |
Priem B, Gross KC. 1992. Mannosyl- and xylosyl-containing glycans promote tomato (Lycopersicon esculentum mill.) fruit ripening. Plant Physiology 98:399−401 doi: 10.1104/pp.98.1.399
|
[22] |
Schoberer J, Strasser R. 2017. Plant glyco-biotechnology. Seminars in Cell & Developmental Biology 80:133−41 doi: 10.1016/j.semcdb.2017.07.005
|
[23] |
Jin C, Kan J, Wang Z, Lu Z, Yu Z. 2006. Activities of β-galactosidase and α-L-arabinofuranosidase, ethylene biosynthetic enzymes during peach ripening and softening. Journal of Food Processing and Preservation 30:515−26 doi: 10.1111/j.1745-4549.2006.00085.x
|
[24] |
Liu H, Qian M, Song C, Li J, Zhao C, et al. 2018. Down-regulation of PpBGAL10 and PpBGAL16 delays fruit softening in peach by reducing polygalacturonase and pectin methylesterase activity. Frontiers in Plant Science 9:1015 doi: 10.3389/fpls.2018.01015
|
[25] |
Kaulfürst-Soboll H, Mertens-Beer M, Brehler R, Albert M, von Schaewen A. 2021. Complex N-glycans are important for normal fruit ripening and seed development in tomato. Frontiers in Plant Science 12:635962 doi: 10.3389/fpls.2021.635962
|
[26] |
Bellande K, Bono JJ, Savelli B, Jamet E, Canut H. 2017. Plant lectins and lectin receptor-like kinases: How do they sense the outside? International Journal of Molecular Sciences 18:1164 doi: 10.3390/ijms18061164
|