[1] |
Davis AP, Govaerts R, Bridson DM, Stoffelen P. 2006. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society 152:465−512 doi: 10.1111/j.1095-8339.2006.00584.x
|
[2] |
International Coffee Organization – ICO. 2020. Coffee trade statistics. Retrieved from: http://www.ico.org
|
[3] |
Moat J, Williams J, Baena S, Wilkinson T, Gole TW, et al. 2017. Resilience potential of the Ethiopian coffee sector under climate change. Nature Plants 3:17081 doi: 10.1038/nplants.2017.81
|
[4] |
Davis AP, Chadburn H, Moat J, O'Sullivan R, Hargreaves S, et al. 2019. High extinction risk for wild coffee species and implications for coffee sector sustainability. Science Advances 5:eaav3473 doi: 10.1126/sciadv.aav3473
|
[5] |
Almeida Silva Silva K, de Souza Rolim G, Borges Valeriano TT. 2020. Influence of El Niño and La Niña on coffee yield in the main coffee-producing regions of Brazil. Theoretical and Applied Climatology 139:1019−29 doi: 10.1007/s00704-019-03039-9
|
[6] |
De Camargo ÂP, De Camargo MBP. 2001. Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia 60:65−68 doi: 10.1590/S0006-87052001000100008
|
[7] |
Morais H, Marur CJ, Caramori PH, Koguishi MS, Gomes JC, et al. 2008. Desenvolvimento de gemas florais, florada, fotossíntese e produtividade de cafeeiros em condições de sombreamento. Pesquisa Agropecuária Brasileira 43:465−72 doi: 10.1590/s0100-204x2008000400004
|
[8] |
de Oliveira RR, Ribeiro THC, Cardon CH, Fedenia L, Maia VA, et al. 2020. Elevated temperatures impose transcriptional constraints and elicit intraspecific differences between coffee genotypes. Frontiers in Plant Science 11:1113 doi: 10.3389/fpls.2020.01113
|
[9] |
Carvalho CD. 2008. Cultivares de café: origem, características e recomendações. Brasília: Embrapa Café, 334
|
[10] |
DaMatta FM, Ronchi CP, Maestri M, Barros RS. 2007. Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology 19:485−510 doi: 10.1590/S1677-04202007000400014
|
[11] |
Madrid E, Chandler JW, Coupland G. 2020. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. Journal of Experimental Botany 72:4−14 doi: 10.1093/jxb/eraa216
|
[12] |
Majerowicz N, Söndahl MR. 2005. Induction and differentiation of reproductive buds in Coffea arabica L. Brazilian Journal of Plant Physiology 17:247−54 doi: 10.1590/S1677-04202005000200008
|
[13] |
de Oliveira RR, Cesarino I, Mazzafera P, Dornelas MC. 2014. Flower development in Coffea arabica L.: New insights into MADS-box genes. Plant Reproduction 27:79−94 doi: 10.1007/s00497-014-0242-2
|
[14] |
Carr MKV. 2001. The water relations and irrigation requirements of coffee. Experimental Agriculture 37:1−36 doi: 10.1017/S0014479701001090
|
[15] |
Crisosto CH, Grantz DA, Meinzer FC. 1992. Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology 10:127−39 doi: 10.1093/treephys/10.2.127
|
[16] |
Drinnan JE, Menzel CM. 1994. Synchronization of anthesis and enhancement of vegetative growth in coffee (Coffea arabica L.) following water stress during floral initiation. Journal of Horticultural Science 69:841−49 doi: 10.1080/14620316.1994.11516520
|
[17] |
Ronchi CP, Miranda FR. 2020. Flowering percentage in arabica coffee crops depends on the water deficit level applied during the pre-flowering stage1. Revista Caatinga 33:195−204 doi: 10.1590/1983-21252020v33n121rc
|
[18] |
DaMatta FM, Rahn E, Läderach P, Ghini R, Ramalho JC. 2019. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Climatic Change 152(1):167−178 doi: 10.1007/s10584-018-2346-4
|
[19] |
Peña AJQ., Builes VHR, Jamarillo AR, Sáenz JRR, Arcila JP. 2011. Effects of Daylength and Soil Humidity on the Flowering of Coffea arabica L. in Colombia. Revista Facultad Nacional de Agronomía Medellín 64:5745−54
|
[20] |
Camargo AP. 1985. O clima e a cafeicultura no Brasil. Agropec 11:13−26
|
[21] |
Neto AP, Favarin JL, de Almeida REM, dos Santos Dias CT, Tezotto T, et al. 2011. Changes of nutritional status during a phenological cycle of coffee under high nitrogen supply by fertigation. Communications in Soil Science and Plant Analysis 42:2414−25 doi: 10.1080/00103624.2011.607731
|
[22] |
Meylan L, Gary C, Allinne C, Ortiz J, Jackson L, et al. 2017. Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agriculture, Ecosystems & Environment 245:32−42 doi: 10.1016/j.agee.2017.05.005
|
[23] |
Vélez-Arango BE, Jamarillo-Robledo A, Chaves-Códoba B, Franco-Arcila M. 2000. Distribución de la floración y la cosecha de café en tres altitudes. Centro Nacional de Investigaciones de Café (Cenicafé), ISSN-0120-0178
|
[24] |
Miranda FR, Drumond LCD, Ronchi CP. 2020. Synchronizing coffee blossoming and fruit ripening in irrigated crops of the Brazilian Cerrado Mineiro Region. Australian Journal of Crop Science 14(4):605−613
|
[25] |
da Silva EA, Mazzafera P. 2008. Influence of temperature and water on coffee culture. The Americas Journal of Plant Science and Biotechnology 2:32−41
|
[26] |
Guerra AF, Rocha OC, Rodrigues GC. 2005. Manejo do cafeeiro irrigado no Cerrado com estresse hídrico controlado. Irrigação & Tecnologia Moderna 65(66):42−45
|
[27] |
Schuch UK, Fuchigami LH, Nagzao MA. 1990. Effect of photoperiod on flower initiation of coffee. HortScience 25:1071a doi: 10.21273/HORTSCI.25.9.1071a
|
[28] |
Schuch UK, Fuchigami LH, Nagao MA. 1992. Flowering, ethylene production, and ion leakage of coffee in response to water stress and gibberellic acid. Journal of the American Society for Horticultural Science 117:158−63 doi: 10.21273/JASHS.117.1.158
|
[29] |
Schuch UK, Azarenko AN, Fuchigami LH. 1994. Endogenous IAA levels and development of coffee flower buds from dormancy to anthesis. Plant Growth Regulation 15:33−41 doi: 10.1007/BF00024674
|
[30] |
Matsumoto TK, Lopez J. 2016. Coffee harvest management by manipulation of coffee flowering with plant growth regulators. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), ISHS Acta Horticulturae 1130, Brisbane, Australia. pp. 219−24 https://doi.org/10.17660/ActaHortic.2016.1130.32
|
[31] |
Lima AA, Santos IS, Torres MEL, Cardon CH, Caldeira CF, et al. 2021. Drought and re-watering modify ethylene production and sensitivity, and are associated with coffee anthesis. Environmental and Experimental Botany 181:104289 doi: 10.1016/j.envexpbot.2020.104289
|
[32] |
Barreto HG, Lazzari F, Ságio SA, Chalfun-Junior A, Paiva LV, et al. 2012. In silico and quantitative analyses of the putative FLC-like homologue in coffee (Coffea arabica L.). Plant Molecular Biology Reporter 30:29−35 doi: 10.1007/s11105-011-0310-9
|
[33] |
Vieira NG, Ferrari IF, Rezende JCd, Mayer JLS, Mondego JMC. 2019. Homeologous regulation of Frigida-like genes provides insights on reproductive development and somatic embryogenesis in the allotetraploid Coffea arabica. Scientific Reports 91:8446 doi: 10.1038/s41598-019-44666-6
|
[34] |
DaMatta FM. 2004. Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research 86:99−114 doi: 10.1016/j.fcr.2003.09.001
|
[35] |
Cannell MGR. 1985. Physiology of the coffee crop. In Coffee, eds. Clifford MN, Willson KC. Boston, MA: Springer. pp. 108−34 https://doi.org/10.1007/978-1-4615-6657-1_5
|
[36] |
Ferrão MAG, Ferrão RG, fornazier MJ et al. 2009. Técnicas de produção de café arábica: renovação e revigoramento das lavouras no Estado do Espírito Santo. 3º ed., 54:56, Vitória, pp. 30−33
|
[37] |
Mintesnot A, Dechassa N. 2018. Effect of altitude, shade, and processing methods on the quality and biochemical composition of green coffee beans in Ethiopia. East African Journal of Sciences 12:87−100
|
[38] |
Cannell MGR. 1976. Crop physiological aspects of coffee bean yield: a review. Kenya Coffee 41:245−53
|
[39] |
Prado SG, Collazo JA, Irwin RE. 2018. Resurgence of specialized shade coffee cultivation: effects on pollination services and quality of coffee production. Agriculture, Ecosystems & Environment 265:567−75 doi: 10.1016/j.agee.2018.07.002
|
[40] |
Morais H, Marur CJ, Caramori PH, de Arruda Ribeiro AM, Gomes JC. 2003. Características fisiológicas e de crescimento de cafeeiro sombreado com guandu e cultivado a pleno sol. Pesquisa Agropecuária Brasileira 38:1131−37 doi: 10.1590/s0100-204x2003001000001
|
[41] |
Morais H, Medri ME, Marur CJ, Caramori PH, de Arruda Ribeiro AM, et al. 2004. Modifications on leaf anatomy of Coffea arabica caused by shade of pigeonpea (Cajanus cajan). Brazilian Archives of Biology and Technology 47:863−71 doi: 10.1590/S1516-89132004000600005
|
[42] |
Franck N, Vaast P. 2009. Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels. Trees 23:761−69 doi: 10.1007/s00468-009-0318-z
|
[43] |
Ha TM, Johnston ME. 2013. The Effect of Low Temperature on Flowering of Rhodanthe Floribunda. Asian Journal of Agriculture and Food Sciences 1:205−209
|
[44] |
Wormer TM, Gituanja J. 1970. Floral initiation and flowering of Coffea arabica L. In Kenya. Experimental Agriculture 6:157−70 doi: 10.1017/S0014479700000211
|
[45] |
Camayo-Vélez GC, Chaves-Córdoba B, Arcila-Pulgarín J, Jaramillo-Robledo Á, Desarrollo A, et al. 2003. Desarrollo floral del cafeto y su relación con las condiciones climáticas de Chinchiná-Caldas. Cenicafé 54:35−49
|
[46] |
Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39 doi: 10.1038/nrg3291
|
[47] |
Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. 2015. Photoperiodic flowering: Time measurement mechanisms in leaves. Annual Review of Plant Biology 66:441−64 doi: 10.1146/annurev-arplant-043014-115555
|
[48] |
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030−33 doi: 10.1126/science.1141752
|
[49] |
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, et al. 1999. GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO Journal 18:4679−88 doi: 10.1093/emboj/18.17.4679
|
[50] |
Shim JS, Imaizumi T. 2015. Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochemistry 54:157−70 doi: 10.1021/bi500922q
|
[51] |
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, et al. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052−56 doi: 10.1126/science.1115983
|
[52] |
Amasino R. 2010. Seasonal and developmental timing of flowering. The Plant Journal 61:1001−13 doi: 10.1111/j.1365-313X.2010.04148.x
|
[53] |
McGarry RC, Ayre BG. 2012. Manipulating plant architecture with members of the CETS gene family. Plant Science 188–189:71−81 doi: 10.1016/j.plantsci.2012.03.002
|
[54] |
Bouché F, Lobet G, Tocquin P, Périlleux C. 2015. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research 44:D1167−D1171 doi: 10.1093/nar/gkv1054
|
[55] |
Lee C, Kim SJ, Jin S, Susila H, Youn G, et al. 2019. Genetic interactions reveal the antagonistic roles of FT/TSF and TFL1 in the determination of inflorescence meristem identity in Arabidopsis. The Plant Journal 99:452−64 doi: 10.1111/tpj.14335
|
[56] |
Jiang Y, Zhu Y, Zhang L, Su W, Peng J, et al. 2020. EjTFL1 genes promote growth but inhibit flower bud differentiation in loquat. Frontiers in Plant Science 11:576 doi: 10.3389/fpls.2020.00576
|
[57] |
Wen C, Zhao W, Liu W, Yang L, Wang Y, et al. 2019. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 146:dev180166 doi: 10.1242/dev.180166
|
[58] |
Goslin K, Zheng B, Serrano-Mislata A, Rae L, Ryan PT, et al. 2017. Transcription Factor Interplay between LEAFY and APETALA1/CAULIFLOWER during Floral Initiation. Plant Physiology 174:1097−109 doi: 10.1104/pp.17.00098
|
[59] |
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, et al. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056−59 doi: 10.1126/science.1114358
|
[60] |
Kath J, Mittahalli Byrareddy V, Mushtaq S, Craparo A, Porcel M. 2021. Temperature and rainfall impacts on robusta coffee bean characteristics. Climate Risk Management 32:100281 doi: 10.1016/j.crm.2021.100281
|
[61] |
Rakocevic M, Braga KSM, Batista ER, Maia AHN, Scholz MBS, et al. 2020. The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regulation 91:305−16 doi: 10.1007/s10725-020-00607-2
|
[62] |
Builes VHR, Arcila J, Jamarillo A, Peña AJQ. 2015. Climate variability influences on the flowering of coffee in Colombia. Cenicafé
|
[63] |
Bunn C, Läderach P, Ovalle Rivera O, Kirschke D. 2015. A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change 129:89−101 doi: 10.1007/s10584-014-1306-x
|
[64] |
DaMatta FM, Ramalho JDC. 2006. Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology 18:55−81 doi: 10.1590/S1677-04202006000100006
|
[65] |
Matiello JB. 1998. Café Conillon: Como Plantar, Tratar, Colher, Preparar e Vender. MM Produções Gráficas, Rio de Janeiro, 1:162. pp. 101−4
|
[66] |
Drinnan JE, Menzel CM. 1995. Temperature affects vegetative growth and flowering of coffee (Coffea arabica L.). Journal of Horticultural Science 70:25−34 doi: 10.1080/14620316.1995.11515269
|
[67] |
Bertrand B, Bardil A, Baraille H, Dussert S, Doulbeau S, et al. 2015. The greater phenotypic homeostasis of the allopolyploid Coffea arabica improved the transcriptional homeostasis over that of both diploid parents. Plant & Cell Physiology 56:2035−51 doi: 10.1093/pcp/pcv117
|
[68] |
Martins MQ, Rodrigues WP, Fortunato AS, Leitão AE, Rodrigues AP, et al. 2016. Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Frontiers in Plant Science 7:947 doi: 10.3389/fpls.2016.00947
|
[69] |
Marias DE, Meinzer FC, Still C. 2017. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica. Ecology and Evolution 7:1297−310 doi: 10.1002/ece3.2681
|
[70] |
Mayer JLS, Carmello-Guerreiro SM, Mazzafera P. 2013. A functional role for the colleters of coffee flowers. AoB PLANTS 5:plt029 doi: 10.1093/aobpla/plt029
|
[71] |
Suárez-López, Wheatley K, Robson F, Onouchi H, Valverde F, et al. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116−20 doi: 10.1038/35074138
|
[72] |
Fernández V, Takahashi Y, Le Gourrierec J, Coupland G. 2016. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. The Plant Journal 86:426−40 doi: 10.1111/tpj.13183
|
[73] |
Kinmonth-Schultz HA, Tong X, Lee J, Song YH, Ito S, et al. 2016. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. New Phytologist 211:208−24 doi: 10.1111/nph.13883
|
[74] |
Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, et al. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242−45 doi: 10.1038/nature10928
|
[75] |
Xu D. 2018. Multifaceted roles of PIF4 in plants. Trends in Plant Science 9:749−751 doi: 10.1016/j.tplants.2018.07.003
|
[76] |
Capovilla G, Schmid M, Posé D. 2015. Control of flowering by ambient temperature. Journal of Experimental Botany 66:59−69 doi: 10.1093/jxb/eru416
|
[77] |
Jin S, Ahn JH. 2021. Regulation of flowering time by ambient temperature: repressing the repressors and activating the activators. New Phytologist 230:938−42 doi: 10.1111/nph.17217
|
[78] |
De Folter S, Immink RGH, Kieffer M, Pařenicová L, Henz SR, et al. 2005. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. The Plant Cell 17:1424−33 doi: 10.1105/tpc.105.031831
|
[79] |
Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, et al. 2015. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biology 16:31 doi: 10.1186/s13059-015-0597-1
|
[80] |
Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949−56 doi: 10.1105/tpc.11.5.949
|
[81] |
Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. The Plant Journal 46:183−192 doi: 10.1111/j.1365-313X.2006.02686.x
|
[82] |
Berry S, Dean C. 2015. Environmental perception and epigenetic memory: mechanistic insight through FLC. The Plant Journal 83:133−48 doi: 10.1111/tpj.12869
|
[83] |
Hepworth J, Antoniou-Kourounioti RL, Bloomer RH, Selga C, Berggren K, et al. 2018. Absence of warmth permits epigenetic memory of winter in Arabidopsis. Nature Communications 9:639 doi: 10.1038/s41467-018-03065-7
|
[84] |
Deng W, Ying H, Helliwell CA, Taylor JM, Peacock WJ, Dennis ES. 2011. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proceedings of The National Academy of Sciences of The United States of America 108:6680−85 doi: 10.1073/pnas.1103175108
|
[85] |
Choi K, Kim J, Hwang HJ, Kim S, Park C, et al. 2011. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. The Plant Cell 23:289−303 doi: 10.1105/tpc.110.075911
|
[86] |
Johanson U, West J, Lister C, Michaels S, Amasino R, et al. 2000. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344−47 doi: 10.1126/science.290.5490.344
|
[87] |
Wang J, Tian L, Lee HS, Chen ZJ. 2006. Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173:965−74 doi: 10.1534/genetics.106.056580
|
[88] |
Choi J, Hyun Y, Kang MJ, Yun HI, Yun JY, et al. 2009. Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development. The Plant Journal 57:918−31 doi: 10.1111/j.1365-313X.2008.03776.x
|
[89] |
Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61:2247−54 doi: 10.1093/jxb/erq098
|
[90] |
Pandey SP, Benstein RM, Wang Y, Schmid M. 2021. Epigenetic regulation of temperature responses: past successes and future challenges. Journal of Experimental Botany erab248 doi: 10.1093/jxb/erab248
|
[91] |
Banerjee A, Wani SH, Roychoudhury, A. 2017. Epigenetic control of plant cold responses. Frontiers in Plant Science 8:1643 doi: 10.3389/fpls.2017.01643
|
[92] |
Tirnaz S, Batley J. 2019. Epigenetics: potentials and challenges in crop breeding. Molecular Plant 12:1309−11 doi: 10.1016/j.molp.2019.09.006
|
[93] |
Vieira LGE, Andrade AC, Colombo CA, de Araújo Moraes AH, Metha Â, et al. 2006. Brazilian coffee genome project: An EST-based genomic resource. Brazilian Journal of Plant Physiology 18:95−108 doi: 10.1590/S1677-04202006000100008
|
[94] |
Martins SCV, Sanglard ML, Morais LE, Menezes-Silva PE, Mauri R, et al. 2019. How do coffee trees deal with severe natural droughts? An analysis of hydraulic, diffusive and biochemical components at the leaf level Trees 33:1679−93 doi: 10.1007/s00468-019-01889-4
|
[95] |
Avila RT, Cardoso AA, de Almeida WL, Costa LC, Machado KLG, et al. 2021. Coffee plants respond to drought and elevated [CO2] through changes in stomatal function, plant hydraulic conductance, and aquaporin expression. Environmental and Experimental Botany 177:104148 doi: 10.1016/j.envexpbot.2020.104148
|
[96] |
Vicente MR, Mantovani EC, Fernandes ALT, Neves JCL, Delazari FT, et al. 2017. Effects of irrigation on the production and development of coffee in the West region of Bahia. Coffee Science 12:544−51
|
[97] |
de T Alvim P. 1960. Moisture stress as a requirement for flowering of coffee. Science 132:354 doi: 10.1126/science.132.3423.354
|
[98] |
Mes MG. 1957. Studies on the flowering of Coffea arabica L. Various phenomena associated with the dormancy of the coffee flower buds. Portugaliae Acta Biologica 5:25−44
|
[99] |
Reddy AGSM. 1979. Quiescence of coffee flower buds and observations on the influence of temperature and humidity on its release. Journal of Coffee Research 9:1−13
|
[100] |
Ronchi CP, de Araújo FC, de Almeida WL, Silva MAAD, de Oliveira Magalhães CE, et al. 2015. Ecophysiological responses of coffee plants subjected to water deficit to narrow blossom period in the Cerrado in the state of Minas Gerais, Brazil. Pesquisa Agropecuária Brasileira 50(1):24−32 doi: 10.1590/s0100-204x2015000100003
|
[101] |
Silva EAD, Brunini O, Sakai E, Arruda FB, de Mattos Pires RC. 2009. Influence of controlled water deficits on flowering synchronization and yield of coffee under three distinct edapho-climatic conditions of São Paulo State, Brazil. Bragantia 68:493−501 doi: 10.1590/S0006-87052009000200024
|
[102] |
Magalhães AC, Angelocci LR. 1976. Sudden alterations in water balance associated with flower bud opening in coffee plants. Journal of Horticultural Science 51:419−23 doi: 10.1080/00221589.1976.11514707
|
[103] |
Astegiano ED, 1984. Movimentação de água e quebra de dormência dos botões florais de café. Tese de Doutorado. Dissertação (Mestrado)- Universidade Federal de Viçosa, Viçosa
|
[104] |
Rena AB, Maestri M. 1985. Fisiologia do cafeeiro. Inf. Agropecuario. 11:26–40
|
[105] |
Soares AR, Mantovani EC, Rena AB, Soares AA. 2005. Irrigação e fisiologia da floração em cafeeiros adultos na região da zona da mata de Minas Gerais. Acta Scientiarum. Biological Sciences 27:117−25 doi: 10.4025/actasciagron.v27i1.2128
|
[106] |
Rezende FC, De Faria MA, Miranda WL. 2009. Efeitos do potencial de água da folha na indução da floração e produção do cafeeiro (Coffea arabica L.). Coffee Science 4:126−35
|
[107] |
Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, et al. 2007. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of The National Academy of Sciences of The United States of America 104:6484−89 doi: 10.1073/pnas.0610717104
|
[108] |
Luo J, Ma N, Pei H, Chen J, Li J, et al. 2013. A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. Journal of Experimental Botany 64:5075−5084 doi: 10.1093/jxb/ert296
|
[109] |
Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, et al. 2014. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. The Plant Cell 26:2920−38 doi: 10.1105/tpc.114.125690
|
[110] |
Yu S, Galvão VC, Zhang Y, Horrer D, Zhang T, et al. 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors. The Plant Cell 24:3320−32 doi: 10.1105/tpc.112.101014
|
[111] |
Ó'Maoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, et al. 2013. Control of Reproductive Floral Organ Identity Specification in Arabidopsis by the C Function Regulator AGAMOUS. The Plant Cell 25:2482−503 doi: 10.1105/tpc.113.113209
|
[112] |
Browning G. 1973. Flower bud dormancy in Coffea arabica L. I. Studies of gibberellin in flower buds and xylem sap and of abscisic acid in flower buds in relation to dormancy release. Journal of Horticultural Science 48:29−41 doi: 10.1080/00221589.1973.11514504
|
[113] |
Unigarro CA, Díaz Bejarano LM, Trejos Pinzón JF. 2019. Effect of two floral inducers on coffee flowering and yield. Revista Cenicafé 70:19−29 doi: 10.38141/10778/70202
|
[114] |
Nascimento MND, Alves JD, Soares ÂM, de Castro EM, Magalhães MM, et al. 2008. Biochemical alterations of plants and bud morphology of coffee tree associated to events on flowering in response to meteorological elements. Ciência Rural 38:1300−7 doi: 10.1590/s0103-84782008000500015
|
[115] |
Trusov Y, Botella JR. 2006. Silencing of the ACC synthase gene AcACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.]. Journal of Experimental Botany 57:3953−60 doi: 10.1093/jxb/erl167
|
[116] |
Wang R, Hsu YM, Bartholomew DP, Maruthasalam S, Lin CH. 2007. Delaying natural flowering in pineapple through foliar application of aviglycine, an inhibitor of ethylene biosynthesis. HortScience 42:1188−91 doi: 10.21273/HORTSCI.42.5.1188
|
[117] |
De Martinis D, Mariani C. 1999. Silencing gene expression of the ethylene-forming enzyme results in a reversible inhibition of ovule development in transgenic tobacco plants. The Plant Cell 11:1061−71 doi: 10.1105/tpc.11.6.1061
|
[118] |
Holden MJ, Marty JA, Singh-Cundy Anu. 2003. Pollination-induced ethylene promotes the early phase of pollen tube growth in Petunia inflata. Journal of Plant Physiology 160:261−69 doi: 10.1078/0176-1617-00929
|
[119] |
Çelikel FG, Van Doorn WG. 2012. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers. Journal of Plant Physiology. 169:1425−29 doi: 10.1016/j.jplph.2012.05.012
|
[120] |
Reid MS, Evans RY, Dodge LL, Mor Y. 1989. Ethylene and silver thiosulfate influence opening of cut rose flowers. Journal of the American Society for Horticultural Science 114:436−40
|
[121] |
Shahri W, Tahir I. 2014. Flower senescence: some molecular aspects. Planta 239:277−297 doi: 10.1007/s00425-013-1984-z
|
[122] |
Gomez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E. 1996. Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiology 112:401−8 doi: 10.1104/pp.112.1.401
|
[123] |
Ságio SA, Barreto HG, Lima AA, Moreira RO, Rezende PM, et al. 2014. Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway. Planta 239:951−63 doi: 10.1007/s00425-014-2026-1
|
[124] |
Morgan PW, He CJ, De Greef JA, De Proft MP. 1990. Does water deficit stress promote ethylene synthesis by intact plants? Plant Physiology 94:1616−24 doi: 10.1104/pp.94.4.1616
|
[125] |
Silva VA, Prado FM, Antunes WC, Paiva RMC, Ferrão MAG, et al. 2018. Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress. Plant Growth Regulation 85:221−229 doi: 10.1007/s10725-018-0385-5
|
[126] |
Linkies A, Müller K, Morris K, Turečková V, Wenk M, et al. 2009. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using Lepidium sativum and Arabidopsis thaliana. The Plant Cell 21:3803−22 doi: 10.1105/tpc.109.070201
|
[127] |
Marino G, Brunetti C, Tattini M, Romano A, Biasioli F, et al. 2017. Dissecting the role of isoprene and stress-related hormones (ABA and ethylene) in Populus nigra exposed to unequal root zone water stress. Tree Physiology 37:1637−47 doi: 10.1093/treephys/tpx083
|
[128] |
Balota M, Cristescu S, Payne WA, te Lintel Hekkert S, Laarhoven LJJ, et al. 2004. Ethylene production of two wheat cultivars exposed to desiccation, heat, and paraquat-induced oxidation. Crop Science 44:812−18 doi: 10.2135/cropsci2004.8120
|
[129] |
Pérez-Pérez JG, Puertolas J, Albacete A, Dodd IC. 2020. Alternation of wet and dry sides during partial rootzone drying irrigation enhances leaf ethylene evolution. Environmental and Experimental Botany 176:104095 doi: 10.1016/j.envexpbot.2020.104095
|
[130] |
Tudela D, Primo-Millo E. 1992. 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiology 100:131−37 doi: 10.1104/pp.100.1.131
|
[131] |
Vanderstraeten L, Depaepe T, Bertrand S, Van Der Straeten D. 2019. The ethylene precursor ACC affects early vegetative development independently of ethylene signaling. Frontiers in Plant Science 10:1591 doi: 10.3389/fpls.2019.01591
|
[132] |
Meng Y, Ma N, Zhang Q, You Q, Li N, et al. 2014. Precise spatio-temporal modulation of ACC synthase by MPK6 cascade mediates the response of rose flowers to rehydration. The Plant Journal 79:941−50 doi: 10.1111/tpj.12594
|
[133] |
Chang C. 2016. Q & A: How do plants respond to ethylene and what is its importance? BMC Biology 14:7 doi: 10.1186/s12915-016-0230-0
|
[134] |
Hua J, Meyerowitz EM. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261−71 doi: 10.1016/S0092-8674(00)81425-7
|
[135] |
Cancel JD, Larsen PB. 2002. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiology 129:1557−67 doi: 10.1104/pp.003780
|
[136] |
Wuriyanghan H, Zhang B, Cao W, Ma B, Lei G, et al. 2009. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21:1473−94 doi: 10.1105/tpc.108.065391
|
[137] |
Tieman DM, Taylor MG, Ciardi JA, Klee HJ. 2000. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proceedings of the National Academy of Sciences of the United States of America 97:5663−68 doi: 10.1073/pnas.090550597
|
[138] |
Sisler EC, Blankenship SM. 1996. Methods of counteracting an ethylene response in plants. U.S.A. Patent Number 5, 518, 988
|
[139] |
Sisler EC, Serek M. 1997. Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiologia Plantarum 100:577−82 doi: 10.1111/j.1399-3054.1997.tb03063.x
|
[140] |
Ella L, Zion A, Nehemia A, Amnon L. 2003. Effect of the ethylene action inhibitor 1-methylcyclopropene on parsley leaf senescence and ethylene biosynthesis. Postharvest Biology and Technology 30:67−74 doi: 10.1016/S0925-5214(03)00080-2
|
[141] |
Trivellini A, Ferrante A, Vernieri P, Serra G. 2011. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development. Journal of Experimental Botany 62:5437−52 doi: 10.1093/jxb/err218
|
[142] |
Bailly C, Corbineau F, Come D. 1992. The effects of abscisic acid and methyl jasmonate on 1-aminocyclopropane 1-carboxylic acid conversion to ethylene in hypocotyl segments of sunflower seedlings, and their control by calcium and calmodulin. Plant Growth Regulation 11:349−55 doi: 10.1007/BF00130641
|
[143] |
Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, et al. 2012. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-Like MADS box genes and PAP2, a SEPALLATA MADS Box gene. The Plant Cell 24:1848−59 doi: 10.1105/tpc.112.097105
|
[144] |
Soltis DE. 2016. Floral flexibility: diversification of the flower. Nature Plants 2:15211 doi: 10.1038/nplants.2015.211
|
[145] |
Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, et al. 2000. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell 5:569−79 doi: 10.1016/S1097-2765(00)80450-5
|
[146] |
Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37 doi: 10.1038/353031a0
|
[147] |
Wu F, Shi X, Lin X, Liu Y, Chong K, et al. 2017. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses. The Plant Journal 89:310−24 doi: 10.1111/tpj.13386
|
[148] |
Colombo L, Franken J, Koetje E, Van Went J, Dons HJ, et al. 1995. The petunia MADS box gene FBP11 determines ovule identity. The Plant Cell 7:1859−68 doi: 10.1105/tpc.7.11.1859
|
[149] |
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14:1935−40 doi: 10.1016/j.cub.2004.10.028
|
[150] |
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200−3 doi: 10.1038/35012103
|
[151] |
Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, et al. 2009. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biology 10:R24 doi: 10.1186/gb-2009-10-2-r24
|
[152] |
Krizek BA, Fletcher JC. 2005. Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics 6:688−98 doi: 10.1038/nrg1675
|
[153] |
Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, et al. 2010. Orchestration of floral initiation by APETALA1. Science 328:85−89 doi: 10.1126/science.1185244
|
[154] |
Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. 2019. Structural Basis for Plant MADS Transcription Factor Oligomerization. Computational and Structural Biotechnology Journal 17:946−53 doi: 10.1016/j.csbj.2019.06.014
|
[155] |
Theissen G, Melzer R. 2007. Molecular mechanisms underlying origin and diversification of the angiosperm flower. Annals of Botany 100:603−19 doi: 10.1093/aob/mcm143
|
[156] |
Kater MM, Dreni L, Colombo L. 2006. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of Experimental Botany 57:3433−44 doi: 10.1093/jxb/erl097
|
[157] |
Litt A, Kramer EM. 2010. The ABC model and the diversification of floral organ identity. Seminars in Cell & Developmental Biology 21:129−37 doi: 10.1016/j.semcdb.2009.11.019
|
[158] |
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, et al. 2014. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181−84 doi: 10.1126/science.1255274
|
[159] |
Scalabrin S, Toniutti L, di Gaspero G, Scaglione D, Magris G, et al. 2020. A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm. Scientific Reports 101:4642 doi: 10.1038/s41598-020-61216-7
|
[160] |
Dereepet A, Bocs S, Rouard M, Guignon V, ravel S, et al. 2006. The coffee genome hub: a resource for coffee genomes. Nucleic Acids Research 43:D1028−D1035 doi: 10.1093/nar/gku1108
|
[161] |
Par̆enicová L, de Folter S, Kieffer M, Horner DS, Favalli C, et al. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. The Plant Cell 15:1538−51 doi: 10.1105/tpc.011544
|
[162] |
de Oliveira RR, Chalfun-Junior A, Paiva LV, Andrade AC. 2010. In silico and quantitative analyses of MADS-box genes in Coffea arabica. Plant Molecular Biology Report 28:460−72 doi: 10.1007/s11105-009-0173-5
|
[163] |
Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, et al. 2004. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany 91:2102−18 doi: 10.3732/ajb.91.12.2102
|
[164] |
Winter N, Kragler F. 2018. Conceptual and methodological considerations on mRNA and proteins as intercellular and long-distance signals. Plant Cell Physiology 59:1700−13 doi: 10.1093/pcp/pcy140
|
[165] |
Urbanus SL, de Folter S, Shchennikova AV, Kaufmann K, Immink RGH, et al. 2009. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biology 91:5 doi: 10.1186/1471-2229-9-5
|
[166] |
Stevens PF. 2016. Angiosperm Phylogeny Website. Version 13.
|
[167] |
Geuten K, Irish V. 2010. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. The Plant Cell 22:2562−78 doi: 10.1105/tpc.110.076026
|
[168] |
Gimenez E, Castañeda L, Pineda B, Pan IL, Moreno V, et al. 2016. TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Molecular Biology 91:513−31 doi: 10.1007/s11103-016-0485-4
|
[169] |
Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E. 1994. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell 6:163−73 doi: 10.1105/tpc.6.2.163
|
[170] |
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, et al. 2002. A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus. Science 296:343−46 doi: 10.1126/science.1068181
|
[171] |
De Martino G, Pan I, Emmanuel E, Levy A, Irish VF. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. The Plant Cell 18:1833−45 doi: 10.1105/tpc.106.042978
|
[172] |
Yuste-Lisbona FJ, Quinet M, Fernández-Lozano A, Pineda B, Moreno V, et al. 2016. Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports 61:18796 doi: 10.1038/srep18796
|
[173] |
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, et al. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766−70 doi: 10.1038/35008089
|
[174] |
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88 doi: 10.1038/nature01741
|
[175] |
Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, et al. 2006. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Molecular Biology and Evolution 23:2245−58 doi: 10.1093/molbev/msl095
|
[176] |
Becker A, Winter KU, Meyer B, Saedler H, Theißen G. 2000. MADS-box gene diversity in seed plants 300 million years ago. Molecular Biology Evolution 17:1425−34 doi: 10.1093/oxfordjournals.molbev.a026243
|
[177] |
Kramer EM, Jaramillo MA, Di Stilio VS. 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011−23 doi: 10.1093/genetics/166.2.1011
|
[178] |
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, et al. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42:115−49 doi: 10.1023/A:1006332105728
|
[179] |
Pabón-Mora N, Ambrose BA, Litt A. 2012. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiology 158:1685−1704 doi: 10.1104/pp.111.192104
|
[180] |
Becker GT, Theißen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29:464−89 doi: 10.1016/S1055-7903(03)00207-0
|
[181] |
Morel P, Chambrier P, Boltz V, Chamot S, Rozier F, et al. 2019. Divergent functional diversification patterns in the SEP/AGL6/AP1 MADS-Box transcription factor superclade. The Plant Cell 31:3033−56 doi: 10.1105/tpc.19.00162
|
[182] |
Sun W, Huang W, Li Z, Song C, Liu D, et al. 2014. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. Annals of Botany 113:653−68 doi: 10.1093/aob/mct301
|
[183] |
Litt A. 2007. An evaluation of A-function: evidence from the APETALA1 and APETALA2 gene lineages. International Journal of Plant Sciences 168:73−91 doi: 10.1086/509662
|
[184] |
Rena AB, Maestri M. 1987. Ecofisiologia do cafeeiro. In Ecofisologia da Prod, eds. Castro PRC, Ferreira SO, Yamada T. Piracicaba: Agricola POTAFOS. pp. 119–47
|
[185] |
DDaMatta FM, Avila RT, Cardoso AA, Martins SCV, Ramalho JC. 2018. Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: a review. Journal of Agricultural and Food Chemistry 66:5264−74 doi: 10.1021/acs.jafc.7b04537
|
[186] |
Kramer EM, Dorit RL, Irish VF. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765−83 doi: 10.1093/genetics/149.2.765
|
[187] |
Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T, et al. 2006. Analysis of the Petunia TM6 MADS Box Gene Reveals Functional Divergence within the DEF/AP3 Lineage. The Plant Cell 18:1819−32 doi: 10.1105/tpc.106.042937
|
[188] |
Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER. 2007. Functional diversification of B MADS-box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Molecular Biology and Evolution 24:465−81 doi: 10.1093/molbev/msl182
|
[189] |
Mazzucato A, Olimpieri I, Siligato F, Picarella ME, Soressi GP. 2008. Characterization of genes controlling stamen identity and development in a parthenocarpic tomato mutant indicates a role for the DEFICIENS ortholog in the control of fruit set. Physiologia Plantarum 132:526−37 doi: 10.1111/j.1399-3054.2007.01035.x
|
[190] |
Bowman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower development in Arabidopsis. The Plant Cell 1:37−52 doi: 10.1105/tpc.1.1.37
|