[1] |
Erb M, Meldau S, Howe GA. 2012. Role of phytohormones in insect-specific plant reactions. Trends in Plant Science 17:250−59 doi: 10.1016/j.tplants.2012.01.003
|
[2] |
Howe GA, Jander G. 2008. Plant immunity to insect herbivores. Annual Review of Plant Biology 59:41−66 doi: 10.1146/annurev.arplant.59.032607.092825
|
[3] |
Walling LL. 2000. The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19:195−216 doi: 10.1007/s003440000026
|
[4] |
Ye S, Jiang Y, Duan Y, Karim A, Fan D, et al. 2014. Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants. Tree Physiology 34:1118−29 doi: 10.1093/treephys/tpu079
|
[5] |
Reymond P, Bodenhausen N, van Poecke RMP, Krishnamurthy V, Dicke M, et al. 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. The Plant Cell 16:3132−47 doi: 10.1105/tpc.104.026120
|
[6] |
Zhao H, Jiang J, Li K, Liu G. 2017. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. Tree Physiology 37:827−44 doi: 10.1093/treephys/tpx020
|
[7] |
Lu J, Ju H, Zhou G, Zhu C, Erb M, et al. 2011. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. The Plant Journal 68:583−96 doi: 10.1111/j.1365-313X.2011.04709.x
|
[8] |
Qi J, Zhou G, Yang L, Erb M, Lu Y, et al. 2011. The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice. Plant Physiology 157:1987−99 doi: 10.1104/pp.111.183749
|
[9] |
Li P, Song A, Gao C, Wang L, Wang Y, et al. 2015. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Reports 34:1365−78 doi: 10.1007/s00299-015-1793-x
|
[10] |
Koo AJ. 2018. Metabolism of the plant hormone jasmonate: a sentinel for tissue damage and master regulator of stress response. Phytochemistry Reviews 17:51−80 doi: 10.1007/s11101-017-9510-8
|
[11] |
Jiang Y, Guo L, Ma X, Zhao X, Jiao B, et al. 2017. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote melampsora resistance in Populus. Tree Physiology 5:665−75 doi: 10.1093/treephys/tpx008
|
[12] |
Zhou G, Qi J, Ren N, Cheng J, Erb M, et al. 2010. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. The Plant Journal 60:638−48 doi: 10.1111/j.1365-313X.2009.03988.x
|
[13] |
Wang H, Hao J, Chen X, Hao Z, Wang X, et al. 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology 65:799−815 doi: 10.1007/s11103-007-9244-x
|
[14] |
Thaler JS, Humphrey PT, Whiteman NK. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science 17:260−70 doi: 10.1016/j.tplants.2012.02.010
|
[15] |
Maffei M, Bossi S, Spiteller D, Mithöfer A, Boland W. 2004. Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiology 134:1752−62 doi: 10.1104/pp.103.034165
|
[16] |
Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, et al. 2010. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biology 10:97 doi: 10.1186/1471-2229-10-97
|
[17] |
Zhen Z, Zhang G, Yang L, Ma N, Li Q, et al. 2019. Characterization and functional analysis of calcium/calmodulin-dependent protein kinases (CaMKs) in the nematode-trapping fungus Arthrobotrys oligospora. Applied Microbiology and Biotechnology 103:819−32 doi: 10.1007/s00253-018-9504-5
|
[18] |
Mohanta TK, Bashir T, Hashem A, Abd_Allah EF, Khan AL, et al. 2018. Early events in plant abiotic stress signaling: interplay between calcium, reactive oxygen species and phytohormones. Journal of Plant Growth Regulation 37:1033−49 doi: 10.1007/s00344-018-9833-8
|
[19] |
Xu Y, Wang J, Wang S, Wang J, Chen X. 2004. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene synthase-A. Plant Physiology 135:507−15 doi: 10.1104/pp.104.038612
|
[20] |
Pesch M, Hülskamp M. 2009. One, two, three..models for trichome patterning in Arabidopsis? Current Opinion in Plant Biology 12:587−92 doi: 10.1016/j.pbi.2009.07.015
|
[21] |
Keeling CI, Madilao LL, Zerbe P, Dullat HK, Bohlmann J. 2011. The primary diterpene synthase products of Picea abies levopimaradiene/abietadiene synthase (PaLAS) are epimers of a thermally unstable diterpenol. Journal of Biological Chemistry 286:21145−53 doi: 10.1074/jbc.M111.245951
|
[22] |
Huber DPW, Philippe RN, Madilao LL, Sturrock RN, Bohlmann J. 2005. Changes in anatomy and terpene chemistry in roots of douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiology 25:1075−83 doi: 10.1093/treephys/25.8.1075
|
[23] |
Liu P, von Dahl CC, Klessig DF. 2011. The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiology 157:2216−26 doi: 10.1104/pp.111.187773
|
[24] |
Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, et al. 2014. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. The Plant Cell 26:2708−23 doi: 10.1105/tpc.114.126763
|
[25] |
Rinerson CI, Rabara RC, Tripathi P, Shen QJ, Rushton PJ. 2016. Structure and evolution of WRKY transcription factors. In Plant Transcription Factors, ed. Gonzalez DH. USA: Academic Press, Elsevier. pp. 163−81 https://doi.org/10.1016/b978-0-12-800854-6.00011-7
|
[26] |
Skibbe M, Qu N, Galis I, Baldwin IT. 2008. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. The Plant Cell 20:1984−2000 doi: 10.1105/tpc.108.058594
|
[27] |
Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T. 2010. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. The Plant Journal for Cell & Molecular Biology 63:229−40 doi: 10.1111/j.1365-313X.2010.04232.x
|
[28] |
Atamian HS, Eulgem T, Kaloshian I. 2012. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235:299−309 doi: 10.1007/s00425-011-1509-6
|
[29] |
Hu L, Ye M, Li R, Zhang T, Zhou G, et al. 2015. The rice transcription Factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of mitogen-activated protein kinase activity. Plant physiology 169:2907−21 doi: 10.1104/pp.15.01090
|
[30] |
Liu J, Chen X, Liang X, Zhou X, Yang F, et al. 2016. Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiology 171:1427−42 doi: 10.1104/pp.15.01921
|
[31] |
Zhang H, Jiang Z, Qin R, Zhang H, Zou J, et al. 2014. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana. BMC Plant Biology 14:264 doi: 10.1186/s12870-014-0264-9
|
[32] |
Fang X, Christenson LM, Wang F, Zeng J, Chen F. 2016. Pine caterpillar outbreak and stand density impacts on nitrogen and phosphorus dynamics and their stoichiometry in Masson pine (Pinus massoniana) plantations in subtropical China. Canadian Journal of Forest Research 46:601−9 doi: 10.1139/cjfr-2015-0357
|
[33] |
Yang Z, Chen H, Jia J, Luo Q, Tang S, et al. 2016. De novo assembly and discovery of metabolic pathways and genes that are involved in defense against pests in Songyun Pinus massoniana Lamb. Bangladesh Journal of Botany 45:855−63
|
[34] |
Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, et al. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology 134:1642−53 doi: 10.1104/pp.103.033696
|
[35] |
Abbott E, Hall D, Hamberger B, Bohlmann J. 2010. Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biology 10:106 doi: 10.1186/1471-2229-10-106
|
[36] |
Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, et al. 2013. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Molecular Biology 82:23−37 doi: 10.1007/s11103-013-0032-5
|
[37] |
Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends in Plant Science 15:247−58 doi: 10.1016/j.tplants.2010.02.006
|
[38] |
Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, et al. 2012. WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnology Journal 10:2−11 doi: 10.1111/j.1467-7652.2011.00634.x
|
[39] |
Mohanta TK, Occhipinti A, Zebelo SA, Foti M, Fliegmann J, et al. 2012. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS ONE 7:e32822 doi: 10.1371/journal.pone.0032822
|
[40] |
Vincent TR, Avramova M, Canham J, Higgins P, Bilkey N, et al. 2017. Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. The Plant Cell 29:1460−79 doi: 10.1105/tpc.17.00136
|
[41] |
Yan C, Fan M, Yang M, Zhao J, Zhang W, et al. 2018. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Molecular Cell 70:136−49 doi: 10.1016/j.molcel.2018.03.013
|
[42] |
Xu L, Liu Z, Zhang K, Lu Q, Liang J, et al. 2013. Characterization of the Pinus massoniana transcriptional response to Bursaphelenchus xylophilus infection using suppression subtractive hybridization. International Journal of Molecular Sciences 14:11356−75 doi: 10.3390/ijms140611356
|
[43] |
Guo H, Feng P, Chi W, Sun X, Xu X, et al. 2016. Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nature Communications 7:12173 doi: 10.1038/ncomms12173
|
[44] |
Boudsocq M, Willmann MR, Mccormack M, Lee H, Shan L, et al. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418−22 doi: 10.1038/nature08794
|
[45] |
Wang Q, Li J, Hu L, Zhang T, Zhang G, et al. 2013. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Reports 32:1075−84 doi: 10.1007/s00299-013-1389-2
|
[46] |
Shen H, Liu C, Zhang Y, Meng X, Zhou X, et al. 2012. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Molecular Biology 80:241−53 doi: 10.1007/s11103-012-9941-y
|
[47] |
Li G, Meng X, Wang R, Mao G, Han L, et al. 2012. Dual-Level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLOS Genetics 8:e1002767 doi: 10.1371/journal.pgen.1002767
|
[48] |
Jiang Y, Liang G, Yang S, Yu D. 2014. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. The Plant Cell 26:230−45 doi: 10.1105/tpc.113.117838
|
[49] |
Karim A, Jiang Y, Guo L, Ling Z, Ye S, et al. 2015. Isolation and characterization of a subgroup IIa WRKY transcription factor PtrWRKY40 from Populus trichocarpa. Tree Physiology 10:1129−39 doi: 10.1093/treephys/tpv084
|
[50] |
Qiu D, Xiao J, Ding X, Xiong M, Cai M, et al. 2007. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Molecular plant-microbe interactions 20:492−99 doi: 10.1094/MPMI-20-5-0492
|
[51] |
Peng X, Hu Y, Tang X, Zhou P, Deng X, et al. 2012. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485−98 doi: 10.1007/s00425-012-1698-7
|
[52] |
Zheng L, Liu G, Meng X, Liu Y, Ji X, et al. 2013. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Molecular Biology 82:303−20 doi: 10.1007/s11103-013-0063-y
|
[53] |
Yu D, Chen C, Chen Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell 13:1527−40 doi: 10.1105/TPC.010115
|
[54] |
Mao P, Duan M, Wei C, Li Y. 2007. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant & Cell Physiology 48:833−42 doi: 10.1093/pcp/pcm058
|
[55] |
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. 2007. Clustal W and Clustal X version 2. Bioinformatics 23:2947−48 doi: 10.1093/bioinformatics/btm404
|
[56] |
Zheng C, Nie L, Wang J, Zhou H, Liu H, et al. 2013. Mean genetic distance calculated using MEGA 4.1 software and different parts of CRs. PloS ONE doi: 10.1371/journal.pone.0082854.t003
|
[57] |
Schultz J, Milpetz F, Bork P, Ponting CP. 1998. SMART, a simple modular architecture research tool: Identification of signaling domains. Proceedings of the National Academy of Sciences of the United State of America 95:5857−64 doi: 10.1073/pnas.95.11.5857
|
[58] |
Yusim K, Szinger JJ, Honeyborne I, Calef C, Goulder PJ, et al. 2004. Enhanced motif scan: A tool to scan for HLA anchor residues in proteins. In HIV Molecular Immunology, eds. Korber B, Brander C, Haynes B, Koup R, Kuiken C, et al. Los Alamos, New Mexico: Los Alamos National Laboratory, Theoretical Biology and Biophysics. pp. 25−36
|
[59] |
Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, et al. 2009. STRING 8 − a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research 37:D412−D416 doi: 10.1093/nar/gkn760
|
[60] |
Mcwilliam H, Li W, Uludag M, Squizzato S, Park YM, et al. 2013. Analysis tool web services from the EMBL-EBI. Nucleic Acids Research 41:W597−W600 doi: 10.1093/nar/gkt376
|
[61] |
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Research 32:D277−D280 doi: 10.1093/nar/gkh063
|
[62] |
Yu H, Luo C, Fan Y, Zhang X, He X. 2020. Isolation and characterization of two APETALA1-Like genes from mango (Mangifera indica L.). Scientia Horticulturae 259:108814 doi: 10.1016/j.scienta.2019.108814
|
[63] |
Chen H, Yang ZQ, Hu Y, Tan JH, Jia J, et al. 2016. Reference genes selection for quantitative gene expression studies in Pinus massoniana L. Trees 30:685−96 doi: 10.1007/s00468-015-1311-3
|
[64] |
Livak KJ, Schmittgen TD. 2001. Analysis of relativegene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
|