[1] |
Giovannoni J. 2001. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology 52:725−49 doi: 10.1146/annurev.arplant.52.1.725
|
[2] |
Giovannoni JJ. 2004. Genetic regulation of fruit development and ripening. The Plant Cell 16:S170−S180 doi: 10.1105/tpc.019158
|
[3] |
Osorio S, Scossa F, Fernie AR. 2013. Molecular regulation of fruit ripening. Frontiers in Plant Science 4:198 doi: 10.3389/fpls.2013.00198
|
[4] |
Chen T, Qin G, Tian S. 2020. Regulatory network of fruit ripening: current understanding and future challenges. New Phytologist 228:1219−26 doi: 10.1111/nph.16822
|
[5] |
Klie S, Osorio S, Tohge T, Drincovich MF, Fait A, et al. 2014. Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species. Plant Physiology 164:55−68 doi: 10.1104/pp.113.226142
|
[6] |
Tiwari S, Kate A, Mohapatra D, Tripathi MK, Ray H, et al. 2020. Volatile organic compounds (VOCs): Biomarkers for quality management of horticultural commodities during storage through e-sensing. Trends in Food Science & Technology 106:417−433 doi: 10.1016/j.jpgs.2020.10.039
|
[7] |
Bleecker AB, Kende H. 2000. Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology 16:1−18 doi: 10.1146/annurev.cellbio.16.1.1
|
[8] |
Barry CS, Giovannoni JJ. 2007. Ethylene and fruit ripening. Journal of Plant Growth Regulation 26:143 doi: 10.1007/s00344-007-9002-y
|
[9] |
Adams DO, Yang SF. 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences of the United States of America 76:170−74 doi: 10.1073/pnas.76.1.170
|
[10] |
Kende H. 1993. Ethylene biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 44:283−307 doi: 10.1146/annurev.pp.44.060193.001435
|
[11] |
Barry CS, Llop-Tous MI, Grierson D. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology 123:979−86 doi: 10.1104/pp.123.3.979
|
[12] |
Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ. 1995. An ethylene-inducible component of signal transduction encoded by never-ripe
. Science 270:1807−9 doi: 10.1126/science.270.5243.1807
|
[13] |
Payton S, Fray RG, Brown S, Grierson D. 1996. Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Molecular Biology 31:1227−31 doi: 10.1007/BF00040839
|
[14] |
Tieman DM, Klee HJ. 1999. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiology 120:165−72 doi: 10.1104/pp.120.1.165
|
[15] |
Alexander L, Grierson D. 2002. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. Journal of Experimental Botany 53:2039−55 doi: 10.1093/jxb/erf072
|
[16] |
Bleecker AB, Esch JJ, Hall AE, Rodríguez FI, Binder BM. 1998. The ethylene-receptor family from Arabidopsis: Structure and function. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 353:1405−12 doi: 10.1098/rstb.1998.0295
|
[17] |
Stepanova AN, Ecker JR. 2000. Ethylene signaling: From mutants to molecules. Current Opinion in Plant Biology 3:353−60 doi: 10.1016/S1369-5266(00)00096-0
|
[18] |
Ciardi J, Klee H. 2001. Regulation of ethylene-mediated responses at the level of the receptor. Annals of Botany 88:813−22 doi: 10.1006/anbo.2001.1523
|
[19] |
Trentmann SM. 2000. ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis. Plant Molecular Biology 44:11−25 doi: 10.1023/A:1006438432198
|
[20] |
Wang KLC, Li H, Ecker JR. 2002. Ethylene biosynthesis and signaling networks. The Plant Cell 14:S131−S151 doi: 10.1105/tpc.001768
|
[21] |
McAtee P, Karim S, Schaffer R, David K. 2013. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in Plant Science 4:79 doi: 10.3389/fpls.2013.00079
|
[22] |
Kumar R, Khurana A, Sharma AK. 2014. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany 65:4561−75 doi: 10.1093/jxb/eru277
|
[23] |
Böttcher C, Keyzers RA, Boss PK, Davies C. 2010. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. Journal of Experimental Botany 61:3615−25 doi: 10.1093/jxb/erq174
|
[24] |
Leyser O. 2010. The power of auxin in plants. Plant Physiology 154:501−5 doi: 10.1104/pp.110.161323
|
[25] |
Guilfoyle TJ, Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology 10:453−60 doi: 10.1016/j.pbi.2007.08.014
|
[26] |
Vernoux T, Brunoud G, Farcot E, Morin V, van den Daele H, et al. 2011. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular Systems Biology 7:508 doi: 10.1038/msb.2011.39
|
[27] |
Hayashi KI. 2012. The interaction and integration of auxin signaling components. Plant and Cell Physiology 53:965−75 doi: 10.1093/pcp/pcs035
|
[28] |
Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development 140:943−50 doi: 10.1242/dev.086363
|
[29] |
Normanly, J. 2010. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harbor Perspectives in Biology 2:a001594 doi: 10.1101/cshperspect.a001594
|
[30] |
Ruiz Rosquete M, Barbez E, Kleine-Vehn J. 2012. Cellular auxin homeostasis: Gatekeeping is housekeeping. Molecular Plant 5:772−86 doi: 10.1093/mp/ssr109
|
[31] |
Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, et al. 2002. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology 50:309−32 doi: 10.1023/A:1016024017872
|
[32] |
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, et al. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147−53 doi: 10.1038/nature02085
|
[33] |
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591−602 doi: 10.1016/S0092-8674(03)00924-3
|
[34] |
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, et al. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39−44 doi: 10.1038/nature03184
|
[35] |
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, et al. 2005. Characterization of an arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17:616−27 doi: 10.1105/tpc.104.026690
|
[36] |
Swarup R, Perry P, Hagenbeek D, van der Straeten D, Beemster GTS, et al. 2007. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell 19:2186−96 doi: 10.1105/tpc.107.052100
|
[37] |
Stepanova AN, Yun J, Likhacheva AV, Alonso JM. 2007. Multilevel interactions between ethylene and auxin in Arabidopsisroots. The Plant Cell 19:2169−2185 doi: 10.1105/tpc.107.052068
|
[38] |
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D, et al. 2008. TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell 133:177−91 doi: 10.1016/j.cell.2008.01.047
|
[39] |
Santisree P, Nongmaithem S, Vasuki H, Sreelakshmi Y, Ivanchenko MG, et al. 2011. Tomato root penetration in soil requires a coaction between ethylene and auxin signaling. Plant Physiology 156:1424−38 doi: 10.1104/pp.111.177014
|
[40] |
Jones B, Frasse P, Olmos E, Zegzouti H, Li Z, et al. 2002. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. The Plant Journal 32:603−13 doi: 10.1046/j.1365-313X.2002.01450.x
|
[41] |
Trainotti Lm Tadiello A, Casadoro G. 2007. The involvement of auxin in the ripening of climacteric fruits comes of age: The hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Journal of Experimental Botany 58:3299−308 doi: 10.1093/jxb/erm178
|
[42] |
Tatsuki M, Nakajima N, Fujii H, Shimada T, Nakano M, et al. 2013. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). Journal of Experimental Botany 64:1049−59 doi: 10.1093/jxb/ers381
|
[43] |
Pan L, Zeng W, Niu L, Lu Z, Liu H, et al. 2015. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany 66:7031−44 doi: 10.1093/jxb/erv400
|
[44] |
Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM. 2013. SEPALLATA1/2-suppressedmature apples have lowethylene, high auxin and reduced transcription of ripening-related genes. AoB PLANTS 5:pls047 doi: 10.1093/aobpla/pls047
|
[45] |
Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, et al. 2012. A genomics approach to understanding the role of auxin in apple (Malus× domestica) fruit size control. BMC Plant Biology 12:7 doi: 10.1186/1471-2229-12-7
|
[46] |
Tadiello A, Longhi S, Moretto M, Ferrarini A, Tononi P, et al. 2016. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus× domesticaBorkh.). The Plant Journal 88:963−75 doi: 10.1111/tpj.13306
|
[47] |
Wang Y, Irving HR. 2011. Developing a model of plant hormone interactions. Plant Signaling & Behavior 6:494−500 doi: 10.4161/psb.6.4.14558
|
[48] |
Given NK, Venis MA, Gierson D. 1988. Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta 174:402−6 doi: 10.1007/BF00959527
|
[49] |
Kumar R, Agarwal P, Tyagi AK, Sharma AK. 2012. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Molecular Genetics and Genomics 287:221−35 doi: 10.1007/s00438-011-0672-6
|
[50] |
Costa F, Cappellin L, Farneti B, Tadiello A, Romano A, et al. 2014. Advances in QTL mapping for ethylene production in apple (Malus× domesticaBorkh.). Postharvest Biology and Technology 87:126−32 doi: 10.1016/j.postharvbio.2013.08.013
|
[51] |
Yue P, Lu Q, Liu Z, Lv T, Li X, et al. 2020. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytologist 226:1781−95 doi: 10.1111/nph.16500
|
[52] |
Costa F, Cappellin L, Longhi S, Guerra W, Magnago P, et al. 2011. Assessment of apple (Malus× domesticaBorkh.) fruit texture by a combined acoustic-mechanical profiling strategy. Postharvest Biology and Technology 61:21−28 doi: 10.1016/j.postharvbio.2011.02.006
|
[53] |
Costa F, Cappellin L, Fontanari M, Longhi S, Guerra W, et al. 2012. Texture dynamics during postharvest cold storage ripening in apple (Malus× domesticaBorkh.). Postharvest Biology and Technology 69:54−63 doi: 10.1016/j.postharvbio.2012.03.003
|
[54] |
Krupa T, Zaraś-Januszkiewicz E, Kistechok A. 2021. Influence of 1-Methylcyclopropene on the antioxidants of ‘Red Cap’ apples during transportation and shelf life. Agronomy 11:341 doi: 10.3390/agronomy11020341
|
[55] |
Ma Y, Ban Q, Shi J, Dong T, Jiang C, et al. 2019. 1-Methylcyclopropene (1-MCP), storage time, and shelf life and temperature affect phenolic compounds and antioxidant activity of ‘Jonagold’ apple. Postharvest Biology and Technology 150:71−79 doi: 10.1016/j.postharvbio.2018.12.015
|
[56] |
Chapman EJ, Estelle M. 2009. Mechanism of auxin-regulated gene expression in plants. Annual Review of Genetics 43:265−85 doi: 10.1146/annurev-genet-102108-134148
|
[57] |
Kramer EM, Ackelsberg EM. 2015. Auxin metabolism rates and implications for plant development. Frontiers in Plant Science 6:150 doi: 10.3389/fpls.2015.00150
|
[58] |
Sanchez Carranza AP, Singh A, Steinberger K, Panigrahi K, Palme K, et al. 2016. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Scientific Reports 6:24212 doi: 10.1038/srep24212
|
[59] |
Cappellin L, Biasioli F, Schuhfried E, Soukoulis C, Märk TD, et al. 2011. Extending the dynamic range of proton transfer reaction time-of-flight mass spectrometers by a novel dead time correction. Rapid Communications in Mass Spectrometry 25:179−83 doi: 10.1002/rcm.4819
|
[60] |
Cappellin L, Biasioli F, Granitto PM, Schuhfried E, Soukoulis C, et al. 2011. On data analysis in PTR-TOF-MS: From raw spectra to data mining. Sensors and Actuators B: Chemical 155:183−90 doi: 10.1016/j.snb.2010.11.044
|
[61] |
Xu Y, Charles MT, Luo Z, Roussel D, Rolland D. 2017. Potential link between fruit yield, quality parameters and phytohormonal changes in preharvest UV-C treated strawberry. Plant Physiology and Biochemistry 116:80−90 doi: 10.1016/j.plaphy.2017.05.010
|
[62] |
Commisso M, Negri S, Bianconi M, Gambini S, Avesani S, et al. 2019. Untargeted and targeted metabolomics and tryptophan decarboxylase in vivo characterization provide novel insight on the development of kiwifruits (Actinidia deliciosa). International Journal of Molecular Sciences 20:897 doi: 10.3390/ijms20040897
|
[63] |
Vrhovsek U, Masuero D, Gasperotti M, Franceschi P, Caputi L, et al. 2012. A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. Journal of Agricultural and Food Chemistry 60:8831−40 doi: 10.1021/jf2051569
|
[64] |
Muller PY, Janovjak H, Miserez AR, Dobbie Z. 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372−79
|
[65] |
Simon P. 2003. Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439−1440 doi: 10.1093/bioinformatics/btg157
|
[66] |
Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, et al. 2011. Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiology 155:185−208 doi: 10.1104/pp.110.165779
|
[67] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170
|
[68] |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21 doi: 10.1093/bioinformatics/bts635
|
[69] |
Anders S, Pyl PT, Huber W. 2015. HTSeq − a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69 doi: 10.1093/bioinformatics/btu638
|
[70] |
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology 428:726−31 doi: 10.1016/j.jmb.2015.11.006
|
[71] |
Wehrens, R. 2011. Chemometrics with R. Heidelberg: Springer Berlin Heidelberg https://doi.org/10.1007/978-3-642-17841-2
|