[1] |
Nakahara Y, Sawabe S, Kainuma K, Katsuhara M, Shibasaka M, et al. 2015. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea. Frontiers in Plant Science 6:920 doi: 10.3389/fpls.2015.00920
|
[2] |
Kappachery S, Yu JW, Baniekal-Hiremath G, Park SW. 2013. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. Comptes Rendus Biologies 336:530−45 doi: 10.1016/j.crvi.2013.09.006
|
[3] |
Chen Y, Chen C, Tan Z, Liu J, Zhuang L, et al. 2016. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance. Frontiers in Plant Science 7:102 doi: 10.3389/fpls.2016.00102
|
[4] |
Chen Y, Zong J, Tan Z, Li L, Hu B, et al. 2015. Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening. Physiology and Biochemistry 89:44−52 doi: 10.1016/j.plaphy.2015.02.007
|
[5] |
Eswaran N, Parameswaran S, Sathram B, Anantharaman B, Raja Krishna Kumar G, et al. 2010. Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnology 10:23 doi: 10.1186/1472-6750-10-23
|
[6] |
Kumar R, Mustafiz A, Sahoo KK, Sharma V, Samanta S, et al. 2012. Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. Plant Molecular Biology 79:555−68 doi: 10.1007/s11103-012-9928-8
|
[7] |
Bao A, Du B, Touil L, Kang P, Wang Q, et al. 2016. Co-expression of tonoplast Cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnology Journal 14:964−75 doi: 10.1111/pbi.12451
|
[8] |
Zhang J, Duan Z, Zhang D, Zhang J, Di H, et al. 2016. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochemical and Biophysical Research Communications 472:75−82 doi: 10.1016/j.bbrc.2016.02.067
|
[9] |
Luo D, Zhou Q, Wu Y, Chai X, Liu W, et al. 2019. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biology 19:32 doi: 10.1186/s12870-019-1630-4
|
[10] |
Gao Y, Long R, Kang J, Wang Z, Zhang T, et al. 2019. Comparative proteomic analysis reveals that antioxidant system and soluble sugar metabolism contribute to salt tolerance in alfalfa (Medicago sativa L.) leaves. Journal of Proteome Research 18:191−203 doi: 10.1021/acs.jproteome.8b00521
|
[11] |
Fan F, Zhang Y, Jiang J, Tang B, Jin X, et al. 2013. Effects of salt stress and stress relief on alfalfa germination. Jiangsu Agricultural Sciences 41:195−99
|
[12] |
Lei Y, Xu Y, Hettenhausen C, Lu C, Shen G, et al. 2018. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biology 18:35 doi: 10.1186/s12870-018-1250-4
|
[13] |
Wu, J. Clough, S. J., Bent, A. F. 2008. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−743 doi: 10.1046/j.1365-313x.1998.00343.x
|
[14] |
Li P, Zhang B, Su T, Li P, Xin X, et al. 2018. BrLAS, a GRAS transcription factor from Brassica rapa, Is involved in drought stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science 9:1792 doi: 10.3389/fpls.2018.01792
|
[15] |
Xu K, Chen S, Li T, Ma X, Liang X, et al. 2015. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biology 15:141 doi: 10.1186/s12870-015-0532-3
|
[16] |
Yang G, Gao X, Ma K, Li D, Jia C, et al. 2018. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC Plant Biology 18:367 doi: 10.1186/s12870-018-1568-y
|
[17] |
Ma H, Liang D, Shuai P, Xia X, Yin W. 2010. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany 61:4011−19 doi: 10.1093/jxb/erq217
|
[18] |
Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, et al. 2016. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Reports 35:655−66 doi: 10.1007/s00299-015-1910-x
|
[19] |
Zhang H, Gao X, Zhi Y, Li X, Zhang Q, et al. 2019. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytologist 223:1918−36 doi: 10.1111/nph.15925
|
[20] |
Seok HY, Nguyen LV, Park HY, Tarte VN, Ha J, et al. 2018. Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator in salt stress response. Biochemical and Biophysical Research Communications 498:954−59 doi: 10.1016/j.bbrc.2018.03.088
|
[21] |
Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, et al. 2013. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiology 161:1202−16 doi: 10.1104/pp.112.205385
|
[22] |
Liu X, Li R, Dai Y, Yuan L, Sun Q, et al. 2019. A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis. Plant Molecular Biology 99:437−47 doi: 10.1007/s11103-019-00828-8
|
[23] |
Uhrig RG, Labandera AM, Moorhead GB. 2013. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends in Plant Science 18:505−13 doi: 10.1016/j.tplants.2013.05.004
|
[24] |
Liu Y, Yan J, Qin Q, Zhang J, Chen Y, et al. 2020. Type one protein phosphatases (TOPPs) contribute to the plant defense response in Arabidopsis. Journal of Integrative Plant Biology 62:360−77 doi: 10.1111/jipb.12845
|
[25] |
Ahn CS, Ahn HK, Pai HS. 2015. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. Journal of Experimental Botany 66:827−40 doi: 10.1093/jxb/eru438
|
[26] |
Hu R, Zhu Y, Shen G, Zhang H. 2017. Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana. Plant Signaling & Behavior 12:e1276687 doi: 10.1080/15592324.2016.1276687
|
[27] |
Konert G, Trotta A, Kouvonen P, Rahikainen M, Durian G, et al. 2015. Protein phosphatase 2A (PP2A) regulatory subunit B'γ interacts with cytoplasmic ACONITASE 3 and modulates the abundance of AOX1A and AOX1D in Arabidopsis thaliana. The New Phytologist 205:1250−63 doi: 10.1111/nph.13097
|
[28] |
Wang Y, Zhan Y, Wu C, Gong S, Zhu N, et al. 2012. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Science 191−192:93−99 doi: 10.1016/j.plantsci.2012.05.001
|
[29] |
Fukudome A, Sun D, Zhang X, Koiwa H. 2017. Salt stress and CTD phosphatase-like4 mediate the switch between production of small nuclear RNAs and mRNAs. The Plant Cell. 29:3214−33 doi: 10.1105/tpc.17.00331
|
[30] |
Hwang JE, Hong JK, Lim CJ, Chen H, Je J, et al. 2010. Distinct expression patterns of two Arabidopsisphytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses. Plant Cell Reports 29:905−15 doi: 10.1007/s00299-010-0876-y
|
[31] |
Liu D, Wang L, Zhai H, Song X, He S, et al. 2014. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato. PLoS One 9:e115128 doi: 10.1371/journal.pone.0115128
|
[32] |
Olmos E, de la Garma JG, Gomez-Jimenez MC, Fernandez-Garcia N. 2017. Arabinogalactan proteins are involved in salt-adaptation and vesicle trafficking in tobacco by-2 cell cultures. Frontiers in Plant Science 8:1092 doi: 10.3389/fpls.2017.01092
|
[33] |
Pérez-Sancho J, Vanneste S, Lee E, McFarlane HE, Esteban del Valle A, et al. 2015. The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiology 168:132−43 doi: 10.1104/pp.15.00260
|
[34] |
Tang G, Zhang C, Ju Z, Zheng S, Wen Z, et al. 2018. The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in Fusarium graminearum. Molecular Plant Pathology 19:1595−611 doi: 10.1111/mpp.12633
|
[35] |
Zhang B, Carrie C, Ivanova A, Narsai R, Murcha MW, et al. 2012. LETM proteins play a role in the accumulation of mitochondrially encoded proteins in Arabidopsis thaliana and AtLETM2displays parent of origin effects. Journal of Biological Chemistry 287:41757−73 doi: 10.1074/jbc.M112.383836
|
[36] |
Jing P, Zou J, Kong L, Hu S, Wang B, et al. 2016. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice. Plant Science 247:104−14 doi: 10.1016/j.plantsci.2016.03.011
|
[37] |
Shin D, Koo YD, Lee J, Lee HJ, Baek D, et al. 2004. Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochemical and Biophysical Research Communications 323:534−40 doi: 10.1016/j.bbrc.2004.08.127
|
[38] |
Yuan F, Lyu MJA, Leng B, Zheng G, Feng Z, et al. 2015. Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation. Plant, Cell & Environment 38:1637−57 doi: 10.1111/pce.12514
|
[39] |
Rong W, Qi L, Wang A, Ye X, Du L, et al. 2014. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal 12:468−79 doi: 10.1111/pbi.12153
|
[40] |
Yao Y, He R, Xie Q, Zhao X, Deng X, et al. 2017. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytologist 213:1667−81 doi: 10.1111/nph.14278
|
[41] |
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, et al. 2019. The AP2/ERF Transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. The Plant Cell 31:1788−806 doi: 10.1105/tpc.18.00918
|
[42] |
An J, Zhang X, Bi S, You C, Wang X, et al. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal 101:573−89 doi: 10.1111/tpj.14555
|
[43] |
Jin X, Yin X, Ndayambaza B, Zhang Z, Min X, et al. 2019. Genome-wide identification and expression profiling of the ERFgene family in Medicago sativa L. under various abiotic stresses. DNA and Cell Biology 38:1056−68 doi: 10.1089/dna.2019.4881
|
[44] |
Yoon EK, Dhar S, Lee MH, Song JH, Lee SA, et al. 2016. Conservation and diversification of the SHR-SCR-SCL23 regulatory network in the development of the functional endodermis in Arabidopsisshoots. Molecular Plant 9:1197−209 doi: 10.1016/j.molp.2016.06.007
|
[45] |
Heo JO, Chang KS, Kim IA, Lee MH, Lee SA, et al. 2011. Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsisroot. PNAS 108:2166−71 doi: 10.1073/pnas.1012215108
|
[46] |
Ma Z, Hu X, Cai W, Huang W, Zhou X, et al. 2014. ArabidopsismiR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLos Genetics 10:e1004519 doi: 10.1371/journal.pgen.1004519
|
[47] |
Nir I, Shohat H, Panizel I, Olszewski N, Aharoni A, et al. 2017. The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. The Plant Cell 29:3186−97 doi: 10.1105/tpc.17.00542
|
[48] |
Cui X, Du Y, Fu J, Yu T, Wang C, et al. 2018. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biology 18:93 doi: 10.1186/s12870-018-1306-5
|
[49] |
Liu P, Guo J, Zhang R, Zhao J, Liu C, et al. 2019. TaCIPK10 interacts with and phosphorylates TaNH2 to activate wheat defense responses to stripe rust. Plant Biotechnology Journal 17:956−68 doi: 10.1111/pbi.13031
|
[50] |
Aslam M, Fakher B, Jakada BH, Zhao L, Cao S, et al. 2019. Genome-wide identification and expression profiling of CBL-CIPK gene family in pineapple (Ananas comosus) and the role of AcCBL1 in abiotic and biotic stress response. Biomolecules 9:293 doi: 10.3390/biom9070293
|
[51] |
Ma Q, Sun M, Kang H, Lu J, You C, et al. 2019. A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance. Plant, Cell & Environment 42:918−30 doi: 10.1111/pce.13349
|
[52] |
Ma Q, Sun M, Lu J, Kang H, You C, et al. 2019. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnology Journal 17:625−37 doi: 10.1111/pbi.13003
|
[53] |
Li Z, Shen J, Liang J. 2019. Genome-wide identification, expression profile, and alternative splicing analysis of the brassinosteroid-signaling kinase (BSK) family genes in Arabidopsis. International Journal of Molecular Sciences 20:1138 doi: 10.3390/ijms20051138
|
[54] |
Li Z, Xu Z, He G, Yang G, Chen M, et al. 2012. A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochemical and Biophysical Research Communications 426:522−27 doi: 10.1016/j.bbrc.2012.08.118
|
[55] |
Chen Y, Chen Y, Shi Z, Jin Y, Sun H, et al. 2019. Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky Bluegrass. International Journal of Molecular Sciences 20:1289 doi: 10.3390/ijms20061289
|
[56] |
Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, et al. 2008. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227:539−58 doi: 10.1007/s00425-007-0637-5
|
[57] |
Matos AR, D’arcy-Lameta A, França M, Pêtres S, Edelman L, et al. 2001. A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Letters 491:188−92 doi: 10.1016/S0014-5793(01)02194-9
|
[58] |
Matos AR, Gigon A, Laffray D, Pêtres S, Zuily-Fodil Y, et al. 2008. Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leaves. Physiologia Plantarum 134:110−20 doi: 10.1111/j.1399-3054.2008.01123.x
|
[59] |
Ji T, Li S, Li L, Huang M, Wang X, et al. 2018. Cucumber Phospholipase D alpha gene overexpression in tobacco enhanced drought stress tolerance by regulating stomatal closure and lipid peroxidation. BMC Plant Biology 18:355 doi: 10.1186/s12870-018-1592-y
|
[60] |
Eastmond PJ. 2006. SUGAR-DEPENDENT1encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsisseeds. The Plant Cell. 18:665−75 doi: 10.1105/tpc.105.040543
|
[61] |
Malinova I, Kunz HH, Alseekh S, Herbst K, Fernie AR, et al. 2014. Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning. PLoS One 9:e112468 doi: 10.1371/journal.pone.0112468
|
[62] |
Fox H, Doron-Faigenboim A, Kelly G, Bourstein R, Attia Z, et al. 2018. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiology 38:423−41 doi: 10.1093/treephys/tpx137
|