[1] |
Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, et al. 2014. Branching out in roots: uncovering form, function, and regulation. Plant Physiology 166:538−50 doi: 10.1104/pp.114.245423
|
[2] |
Mao J, Niu C, Li K, Mobeen Tahir M, Khan A, et al. 2020. Exogenous 6-benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis. Plant Biology 22:1150−9 doi: 10.1111/plb.13154
|
[3] |
Wells CE, Eissenstat DM. 2001. Marked differences in survivorship among apple roots of different diameters. Ecology 82:882−92 doi: 10.1890/0012-9658(2001)082[0882:MDISAA]2.0.CO;2
|
[4] |
Tahir MM, Wang H, Ahmad B, Liu Y, Fan S, et al. 2021. Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Scientia Horticulturae 275:109642 doi: 10.1016/j.scienta.2020.109642
|
[5] |
Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett M,e et al. 2002. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. The Plant Journal 29:325−32 doi: 10.1046/j.0960-7412.2001.01217.x
|
[6] |
Hewitt S, Hillman JR, Knights BA. 1980. Steroidal oestrogens and plant growth and development. New Phytologist 85:329−50 doi: 10.1111/j.1469-8137.1980.tb03172.x
|
[7] |
Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, et al. 2013. Lateral root development in Arabidopsis: fifty shades of auxin. Trends in plant science 18:450−8 doi: 10.1016/j.tplants.2013.04.006
|
[8] |
Hewitt A, Watson G. 2009. Bare root liner production can alter tree root architecture. Journal of Environmental Horticulture 27:99−104 doi: 10.24266/0738-2898-27.2.99
|
[9] |
Malamy JE, Benfey PN. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33−44 doi: 10.1242/dev.124.1.33
|
[10] |
Dubrovsky JG, Rost TL, Colón-Carmona A, Doerner P. 2001. Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta 214:30−6 doi: 10.1007/s004250100598
|
[11] |
O'Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, et al. 2016. Nitrate transport, sensing, and responses in plants. Molecular plant 9:837−56 doi: 10.1016/j.molp.2016.05.004
|
[12] |
Sheng L, Hu X, Du Y, Zhang G, Huang H, et al. 2017. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsisroot system architecture. Development 144:3126−33 doi: 10.1242/dev.152132
|
[13] |
Tahir MM, Li S, Mao J, Liu Y, Li K, et al. 2021. High nitrate inhibited adventitious roots formation in apple rootstock by altering hormonal contents and miRNAs expression profiles. Scientia Horticulturae 286:110230 doi: 10.1016/j.scienta.2021.110230
|
[14] |
López-Bucio J, Cruz-Ramı́rez A, Herrera-Estrella L. 2003. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6:280−87 doi: 10.1016/S1369-5266(03)00035-9
|
[15] |
Crawford NM, Glass ADM. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science 3:389−95 doi: 10.1016/S1360-1385(98)01311-9
|
[16] |
Mounier E, Pervent M, Ljung K, Gojon A, Nacry P. 2014. Auxin-mediated nitrate signalling by NRT1.1participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant, Cell & Environment 37:162−74 doi: 10.1111/pce.12143
|
[17] |
Li S, Xue L, Xu S, Feng H, An L. 2009. Mediators, genes and signaling in adventitious rooting. The Botanical Review 75:230−47 doi: 10.1007/s12229-009-9029-9
|
[18] |
Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, et al. 2005. The putative high-affinity nitrate transporter NRT2. 1 represses lateral root initiation in response to nutritional cues. PNAS 102:13693−98 doi: 10.1073/pnas.0504219102
|
[19] |
Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG. 2005. Nutritional regulation ofANR1 and other root-expressed MADS-box genes in Arabidopsisthaliana. Planta 222:730 doi: 10.1007/s00425-005-0020-3
|
[20] |
Marhavý P, Vanstraelen M, De Rybel B, Ding Z, Bennett MJ, et al. 2013. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. The EMBO journal 32:149−58 doi: 10.1038/emboj.2012.303
|
[21] |
Shkolnik-Inbar D, Bar-Zvi D. 2010. ABI4mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. The Plant Cell 22:3560−73 doi: 10.1105/tpc.110.074641
|
[22] |
Grunewald W, De Smet I, Lewis DR, Löfke C, Jansen L, et al. 2012. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsisroot development through local control on flavonol biosynthesis. PNAS 109:1554−59 doi: 10.1073/pnas.1121134109
|
[23] |
Gao H, Yang H, Zhang W. 2008. Effects of nitric oxide on lateral root formation induced by IBA in Malus hupehensis Rehd. seedlings. Acta Horticulturae Sinica 35:157−62 doi: 10.16420/j.issn.0513-353x.2008.02.006
|
[24] |
Chen C-W, Yang Y-W, Lur H-S, Tsai Y-G, Chang M-C. 2006. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant and Cell Physiology 47:1−13 doi: 10.1093/pcp/pci216
|
[25] |
Huang S, Bin J, Li Z. 2002. Effects of methyl jasmonate and ABA on the growth of root and hypocotyls of peanut seedling. Acta Photophysiologica Sinica 5:351−56
|
[26] |
Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271−76 doi: 10.1038/35104500
|
[27] |
Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, et al. 2013. Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in plant science 18:459−67 doi: 10.1016/j.tplants.2013.04.010
|
[28] |
Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M. 2005. Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. The Plant Journal 44:382−95 doi: 10.1111/j.1365-313X.2005.02537.x
|
[29] |
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASLgenes inArabidopsis. The Plant Cell 19:118−30 doi: 10.1105/tpc.106.047761
|
[30] |
Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, et al. 2015. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4expression. Developmental cell 33:576−88 doi: 10.1016/j.devcel.2015.04.024
|
[31] |
Hu X, Xu L. 2016. Transcription factors WOX11/12directly activate WOX5/7to promote root primordia initiation and organogenesis. Plant Physiology 172:2363−73 doi: 10.1104/pp.16.01067
|
[32] |
Mao J, Zhang D, Li K, Liu Z, Liu X, et al. 2017. Effect of exogenous Brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Plant Growth Regulation 82:391−401 doi: 10.1007/s10725-017-0264-5
|
[33] |
Wang H, Tahir MM, Nawaz MA, Mao J, Li K, et al. 2020. Spermidine application affects the adventitious root formation and root morphology of apple rootstock by altering the hormonal profile and regulating the gene expression pattern. Scientia Horticulturae 266:109310 doi: 10.1016/j.scienta.2020.109310
|
[34] |
Lee HW, Cho C, Kim J. 2015. Lateral organ boundaries domain16 and 18 act downstream of the AUXIN1 and LIKE-AUXIN3 auxin influx carriers to control lateral root development in Arabidopsis. Plant Physiology 168:1792−806 doi: 10.1104/pp.15.00578
|
[35] |
Remans T, Nacry P, Pervent M, Girin T, Tillard P, et al. 2006. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology 140:909−21 doi: 10.1104/pp.105.075721
|
[36] |
Zhang H, Forde BG. 2000. Regulation of Arabidopsisroot development by nitrate availability. Journal of Experimental Botany 51:51−59 doi: 10.1093/jexbot/51.342.51
|
[37] |
Zhang H, Jennings A, Barlow PW, Forde BG. 1999. Dual pathways for regulation of root branching by nitrate. PNAS 96:6529−34 doi: 10.1073/pnas.96.11.6529
|
[38] |
Elsheery NI, Helaly MN, El-Hoseiny HM, Alam-Eldein SM. 2020. Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10:558 doi: 10.3390/agronomy10040558
|
[39] |
Helaly MN, El-Hoseiny H, El-Sheery NI, Rastogi A, Kalaji HM. 2017. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiology and Biochemistry 118:31−44 doi: 10.1016/j.plaphy.2017.05.021
|
[40] |
Naser HM, Hanan E-H, Elsheery NI, Kalaji HM. 2016. Effect of biofertilizers and putrescine amine on the physiological features and productivity of date palm (Phoenix dactylifera, L.) grown on reclaimed-salinized soil. Trees 30:1149−61 doi: 10.1007/s00468-016-1353-1
|
[41] |
Mao J, Zhang D, Zhang X, Li K, Liu Z, et al. 2018. Effect of exogenous indole-3-butanoic acid (IBA) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Scientia Horticulturae 232:112−20 doi: 10.1016/j.scienta.2017.12.013
|
[42] |
Gu Y, Jiang B. 2006. Effects of IBA and NAA on Endogenous IAA and ABA in the Differentiation of Adventitious Root in Vitro of Elaeocarpus sylvestris. Subtropical Plant Science 3:25−27
|
[43] |
Gonçalves JC, Diogo G, Coelho MT, Vidal N, Amâncio S. 2008. Quantitation of endogenous levels of IAA, IAAsp and IBA in micro-propagated shoots of hybrid chestnut pre-treated with IBA. In Vitro Cellular & Developmental Biology-Plant 44:412 doi: 10.1007/s11627-008-9151-0
|
[44] |
Hewitt EJ, Hucklesby DP. 1966. Molecular exclusion chromatography of nitrite and hydroxylamine reductases from plants with reference to electron donor systems. Biochemical and Biophysical Research Communications 25:689−93 doi: 10.1016/0006-291X(66)90510-9
|
[45] |
Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, et al. 2012. Auxin controls Arabidopsisadventitious root initiation by regulating jasmonic acid homeostasis. The Plant Cell 24:2515−27 doi: 10.1105/tpc.112.099119
|
[46] |
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, et al. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental cell 18:927−37 doi: 10.1016/j.devcel.2010.05.008
|
[47] |
Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, et al. 2016. Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiology 172:1237−48 doi: 10.1104/pp.16.01047
|
[48] |
Sun X, Jia X, Huo L, Che R, Gong X, et al. 2018. MdATG18aoverexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple. Plant, Cell & Environment 41:469−80 doi: 10.1111/pce.13110
|
[49] |
Kovács B, Puskás-Preszner A, Huzsvai L, Lévai L, Bódi É. 2015. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiology and Biochemistry 96:38−44 doi: 10.1016/j.plaphy.2015.07.013
|
[50] |
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, et al. 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7and ARF19. The Plant Cell 17:444−63 doi: 10.1105/tpc.104.028316
|
[51] |
Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, et al. 2005. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. The Plant Journal 43:118−30 doi: 10.1111/j.1365-313X.2005.02432.x
|
[52] |
Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B. 2007. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008−13 doi: 10.1038/nature06215
|
[53] |
Xu M, Zhu L, Shou H, Wu P. 2005. A PIN1family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant and Cell Physiology 46:1674−81 doi: 10.1093/pcp/pci183
|
[54] |
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591−602 doi: 10.1016/S0092-8674(03)00924-3
|
[55] |
Tian H, Jia Y, Niu T, Yu Q, Ding Z. 2014. The key players of the primary root growth and development also function in lateral roots in Arabidopsis. Plant Cell Reports 33:745−53 doi: 10.1007/s00299-014-1575-x
|
[56] |
Liu J, Sheng L, Xu Y, Li J, Yang Z, et al. 2014. WOX11and 12are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell 26:1081−93 doi: 10.1105/tpc.114.122887
|
[57] |
Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, et al. 2014. WOX5 suppresses CYCLINDactivity to establish quiescence at the center of the root stem cell niche. Current Biology 24:1939−44 doi: 10.1016/j.cub.2014.07.019
|
[58] |
Feng Z, Sun X, Wang G, Liu H, Zhu J. 2012. LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. Annals of botany 110:1−10 doi: 10.1093/aob/mcs019
|
[59] |
Fan S, Zhang D, Zhang L, Gao C, Xin M, et al. 2017. Comprehensive analysis of GASAfamily members in the Malus domestica genome: identification, characterization, and their expressions in response to apple flower induction. BMC Genomics 18:1−19 doi: 10.1186/s12864-017-4213-5
|
[60] |
Tahir MM, Chen S, Ma X, Li S, Zhang X, et al. 2021. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Plant Physiology and Biochemistry 165:123−36 doi: 10.1016/j.plaphy.2021.05.015
|
[61] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
|