[1] |
Fayek MA, Fayed TA, El-Said EH, EI-Hamed EEA. 2008. Utilization of Some Chemicals for Synchronizing Time of Male and Female Flowers in Pecan (Carya illionensis Koch). Research Journal of Agriculture and Biological Sciences 4:310−20
|
[2] |
Han M, Peng F, Marshall P. 2018. Pecan phenology in Southeastern China. Annals of Applied Biology 172:160−69 doi: 10.1111/aab.12408
|
[3] |
Blayney D, Gutierrez P (revised). 2017. Economic importance of the pecan industry. Guide Z-501. https://aces.nmsu.edu/pubs/_z/Z501/welcome.html (Accessed on 22 November, 2021).
|
[4] |
Cowell BD. 2015. Stink Bugs: Spatial Distribution, Pecan Phenological Susceptibility and Sampling Program. Thesis. University of Arkansas, Fayetteville. 197 pp. https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=2353&context=etd
|
[5] |
Andersen PC, Crocker TE. 2019. The pecan tree. EDIS1−16
|
[6] |
Denay G, Chahtane H, Tichtinsky G, Parcy F. 2017. A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology 35:15−22 doi: 10.1016/j.pbi.2016.09.003
|
[7] |
Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W. 1998. Genetic control of flowering time in Arabidopsis. Annual Review of Plant Physiology and Plant Molecular Biology 49:345−70 doi: 10.1146/annurev.arplant.49.1.345
|
[8] |
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, et al. 2017. Plant hormone signaling in flowering: An epigenetic point of view. Journal of Plant Physiology 214:16−27 doi: 10.1016/j.jplph.2017.03.018
|
[9] |
Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y. 1991. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. The Plant Cell 3(7):677−84 doi: 10.2307/3869249
|
[10] |
Roitsch T, Ehneß R. 2000. Regulation of source/sink relations by cytokinins. Plant Growth Regulation 32:359−67 doi: 10.1023/A:1010781500705
|
[11] |
Gangwar S, Singh VP, Tripathi DK, Chauhan DK, Prasad SM, et al. 2014. Plant Responses to Metal Stress: The Emerging Role of Plant Growth Hormones in Toxicity Alleviation. In Emerging Technologies and Management of Crop Stress Tolerance, eds. Ahmad P, Rasool S. USA: Academic Press, Elsevier. pp. 215−48 https://doi.org/10.1016/B978-0-12-800875-1.00010-7
|
[12] |
Chen X, Qi S, Zhang D, Li Y, An N, et al. 2018. Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering 'Qinguan' and weakly flowering 'Nagafu no.2' apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biology 18:370 doi: 10.1186/s12870-018-1555-3
|
[13] |
Achard P, Baghour M, Chapple A, Hedden P, van der Straeten D, et al. 2007. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. PNAS 104:6484−89 doi: 10.1073/pnas.0610717104
|
[14] |
Muradoglu F, Balta F, Battal P. 2010. Endogenous hormone levels in bearing and non-bearing shoots of walnut (Juglans regia L.) and their mutual relationships. Acta Physiologiae Plantarum 32:53 doi: 10.1007/s11738-009-0376-2
|
[15] |
Potchanasin P, Sringarm K, Sruamsiri P, Bangerth KF. 2009. Floral induction (FI) in longan (Dimocarpus longan, Lour.) trees: Part I. Low temperature and potassium chlorate effects on FI and hormonal changes exerted in terminal buds and sub-apical tissue. Scientia Horticulturae 122:288−94 doi: 10.1016/j.scienta.2009.06.008
|
[16] |
Clarke AE, Dennis E, Mol J. 1992. Forefronts of flowering. The Plant Cell 4:867−70 doi: 10.1105/tpc.4.8.867
|
[17] |
Lavee S. 1989. Involvement of plant growth regulators and endogenous growth substances in the control of alternate bearing. VI International Symposium on Growth Regulators in Fruit Production, Penticton, Canada. ISHS Acta Horticulturae 239: 311−22. https://doi.org/10.17660/ActaHortic.1989.239.50
|
[18] |
Martínez C, Pons E, Prats G, León J. 2004. Salicylic acid regulates flowering time and links defense responses and reproductive development. The Plant Journal 37:209−17 doi: 10.1046/j.1365-313X.2003.01954.x
|
[19] |
Wada KC, Yamada M, Shiraya T, Takeno K. 2010. Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. Journal of Plant Physiology 167:447−52 doi: 10.1016/j.jplph.2009.10.006
|
[20] |
Randall JJ, Rascon A, Heerema RJ, Potter MT. 2015. Molecular mechanisms of pecan flower induction. I International Symposium on Pecans and Other Carya in Indigenous and Managed Systems. College Station, TX, USA. ISHS Acta Horticulturae 1070: 89−99. https://doi.org/10.17660/ActaHortic.2015.1070.10
|
[21] |
Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 10:791−800 doi: 10.1105/tpc.10.5.791
|
[22] |
Thompson MY, Randall JJ, VanLeeuwen D, Heerema RJ. 2021. Differential expression of key floral initiation genes in response to plant growth regulator application and alternate bearing in pecan. Journal of the American Society for Horticultural Science 146:206−14 doi: 10.21273/JASHS04954-20
|
[23] |
Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, et al. 2015. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 4:e09269 doi: 10.7554/eLife.09269
|
[24] |
Reinhardt D, Mandel T, Kuhlemeier C. 2000. Auxin regulates the initiation and radial position of plant lateral organs. The Plant Cell 12:507−18 doi: 10.1105/tpc.12.4.507
|
[25] |
Villar L, Lienqueo I, Llanes A, Rojas P, Perez J, et al. 2020. Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing). Plos One 15:e0230110 doi: 10.1371/journal.pone.0230110
|
[26] |
Airoldi CA, Davies B. 2012. Gene duplication and the evolution of plant MADS box transcription factors. Journal of Genetics and Genomics 39:157−65 doi: 10.1016/j.jgg.2012.02.008
|
[27] |
Wang M, Xi D, Chen Yu, Zhu C, Zhao Y, et al. 2019. Morphological characterization and transcriptome analysis of pistillate flowering in pecan (Carya illinoinensis). Scientia Horticulturae 257:108674 doi: 10.1016/j.scienta.2019.108674
|
[28] |
Jia Z, Wa ng G, Xuan J, Zhang J, Zhai M, et al. 2018. Comparative transcriptome analysis of pecan female and male inflorescences. Russian Journal of Plant Physiology 65:186−96 doi: 10.1134/s1021443718020139
|
[29] |
Dijkstra C, Adams E, Bhattacharya A, Page AF, Anthony P, et al. 2008. Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Reports 27:463−70 doi: 10.1007/s00299-007-0471-z
|
[30] |
Cheng H, Qin L, Lee S, Fu X, Richards DE, et al. 2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055−64 doi: 10.1242/dev.00992
|
[31] |
Harberd NP. 2003. Botany. Relieving DELLA restraint. Science 299:1853−54 doi: 10.1126/science.1083217
|
[32] |
Murase K, Hirano Y, Sun TP, Hakoshima T. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459−63 doi: 10.1038/nature07519
|
[33] |
King KE, Moritz T, Harberd NP. 2001. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767−76 doi: 10.1093/genetics/159.2.767
|
[34] |
Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, et al. 2001. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555−66 doi: 10.1105/TPC.010047
|
[35] |
Iuchi S, Suzuki H, Kim YC, Iuchi A, Kuromori T, et al. 2007. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. The Plant Journal 50:958−66 doi: 10.1111/j.1365-313X.2007.03098.x
|
[36] |
Sun T, Kamiya Y. 1994. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. The Plant Cell 6:1509−18 doi: 10.2307/3869986
|
[37] |
Wilson RN, Heckman JW, Somerville CR. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology 100:403−8 doi: 10.1104/pp.100.1.403
|
[38] |
Fan X, Yuan D, Tian X, Zhu Z, Liu M, et al. 2017. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in the flowers of Chinese chinquapin (Castanea henryi). Journal of Agricultural and Food Chemistry 65:10332−49 doi: 10.1021/acs.jafc.7b03755
|
[39] |
Gu T, Jia S, Huang X, Wang L, Fu W, et al. 2019. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Planta 250:145−62 doi: 10.1007/s00425-019-03155-w
|
[40] |
Baktir I, Ulger S, Kaynak L, Himelrick DG. 2004. Relationship of seasonal changes in endogenous plant hormones and alternate bearing of Olive trees. HortScience 39:987−90 doi: 10.21273/hortsci.39.5.987
|
[41] |
Ulger S, Sonmez S, Karkacier M, Ertoy N, Akdesir O, et al. 2004. Determination of endogenous hormones, sugars and mineral nutrition levels during the induction, initiation and differentiation stage and their effects on flower formation in olive. Plant Growth Regulation 42:89−95 doi: 10.1023/B:GROW.0000014897.22172.7d
|
[42] |
Wood BW. 2011. Influence of plant bioregulators on pecan flowering and implications for regulation of pistillate flower initiation. HortScience 46:870−77 doi: 10.21273/HORTSCI.46.6.870
|
[43] |
Bangerth F. 2006. Flower induction in perennial fruit trees: still an enigma? X International Symposium on Plant Bioregulators in Fruit Production, Saltillo, Mexico. ISHS Acta Horticulturae 727: 177−95 https://doi.org/10.17660/ActaHortic.2006.727.20
|
[44] |
Aliyu OM, Adeigbe OO, Awopetu JA. 2011. Foliar application of the exogenous plant hormones at pre-blooming stage improves flowering and fruiting in cashew (Anacardium occidentale L.). Journal of Crop Science and Biotechnology 14:143−50 doi: 10.1007/s12892-010-0070-3
|
[45] |
Núñez-Elisea R, Davenport TL. 1998. Gibberellin and temperature effects on dormancy release and shoot morphogenesis of mango (Mangifera indica L.). Scientia Horticulturae 77:11−21 doi: 10.1016/S0304-4238(98)00158-7
|
[46] |
Davenport TL, Pearce DW, Rood SB. 2000. Correlation of Endogenous Gibberellic Acid with Initiation of Mango Shoot Growth. Journal of Plant Growth Regulation 19:445−52 doi: 10.1007/s003440000029
|
[47] |
Ramírez H, Benavides A, Robledo V, Alonso R, Gόmez J. 2004. Gibberellins and cytokinins related to fruit bud initiation in apple. XXVI International Horticultural Congress: Key Processes in the Growth and Cropping of Deciduous Fruit and Nut Trees, Toronto, Canada. ISHS Acta Horticulturae 636: 409−13 https://doi.org/10.17660/actahortic.2004.636.50
|
[48] |
Bangerth KF. 2009. Floral induction in mature, perennial angiosperm fruit trees: similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Scientia Horticulturae 122:153−63 doi: 10.1016/j.scienta.2009.06.014
|
[49] |
Kittikorn M, Shiraishi N, Okawa K, Ohara H, Yokoyama M, et al. 2010. Effect of fruit load on 9,10-ketol-octadecadienoic acid (KODA), GA and jasmonic acid concentrations in apple buds. Scientia Horticulturae 124:225−30 doi: 10.1016/j.scienta.2010.01.008
|
[50] |
Li Y, Zhang D, Xing L, Zhang S, Zhao C, et al. 2016. Effect of exogenous 6 benzylaminopurine (6-BA) on branch type, floral induction and initiation, and related gene expression in 'Fuji' apple (Malus domestica Borkh). Plant Growth Regulation 79:65−70 doi: 10.1007/s10725-015-0111-5
|
[51] |
Tworkoski T, Miller S. 2007. Endogenous hormone concentrations and bud-break response to exogenous benzyl adenine in shoots of apple trees with two growth habits grown on three rootstocks. The Journal of Horticultural Science and Biotechnology 82:960−66 doi: 10.1080/14620316.2007.11512333
|
[52] |
Wood BW. 1993. Hydrogen cyanamide advances pecan budbreak and harvesting. Journal of the American Society for Horticultural Science 118:690−93 doi: 10.21273/JASHS.118.6.690
|
[53] |
Bakry KA. 2007. Response of pecan trees to spray with dorcy 50, borax, and zinc sulphate. Egyptian Journal of Applied Science 22:10
|
[54] |
Dekekind RE. 2020. Investigating the vegetative development and yield of pecan. Master thesis. University of Stellenbosch
|
[55] |
Proebsting EL, Mills HH. 1973. Bloom delay and frost survival in ethephon-treated sweet cherry. HortScience 8:46−47
|
[56] |
Webster AD. 1984. Plant growth regulator sprays to delay the blossoming of victoria plum. Journal of Horticultural Science 59(3):377−86 doi: 10.1080/00221589.1984.11515209
|
[57] |
Bubán T, Turi I. 1986. Delaying bloom in apricot and peach trees. VIII International Symposium on Apricot Culture and Decline, Kecskemét, Hungary. ISHS Acta Horticulturae 192: 57−64 https://doi.org/10.17660/ActaHortic.1986.192.11
|
[58] |
Ebel RC, Caylor A, Pitts J, Boozer B. 1999. Effect of Ethrel on Bloom Delay, Harvest Date, and Fruit Weight of 'Empress' Peach. HortTechnology 9:65−67 doi: 10.21273/HORTTECH.9.1.65
|
[59] |
Crisosto CH, Miller AN, Lombard PB, Robbins S. 1990. Effect of fall ethephon applications on bloom delay, flowering, and fruiting of peach and prune. HortScience 25:426−28 doi: 10.21273/hortsci.25.4.426
|
[60] |
Grijalva-Contreras RL, Martínez-Díaz G, Macías-Duarte R, Robles-Contreras F. 2011. Effect of ethephon on almond bloom delay, yield, and nut quality under warm climate conditions in northwestern Mexico. Chilean Journal of Agricultural Research 71:34−38 doi: 10.4067/S0718-58392011000100004
|
[61] |
ETHREL PGR. https://www.cropmanagement.com/ethrel-pgr%E2%80%8B/
|
[62] |
Khalil SK, Mexal JG, Khalil IH, Wahab S, Rehman A, et al. 2016. Foliar Ethephon Fruit Thinning Improves Nut Quality and Could Manage Alternate Bearing in Pecan. The Pharmaceutical and Chemical Journal 3:150−56
|
[63] |
Beede R. 2011. The Science (and Art) of Ethephon Use on Walnut. University of California, Agricultural & Natural Resources cooperation extension, Kings County. https://cekings.ucanr.edu/newsletters/Nut_Crops39678.pdf
|
[64] |
Crassweller R. 2006. Home Orchards: Flowering Habits of Apples and Pears. Pennstate Extension https://extension.psu.edu/home-orchards-flowering-habits-of-apples-and-pears
|
[65] |
Wood BW. 1988. Axillary shoot abscission in pecan and its relationship to growth regulators. Journal of the American Society for Horticultural Science 113:713−17
|
[66] |
Wood BW. 1995. Relationship of reproductive and vegetative characteristics of pecan to previous-season fruit development and postripening foliation period. Journal of the American Society for Horticultural Science 120:635−42 doi: 10.21273/JASHS.120.4.635
|
[67] |
Pal S, Ram S. 1978. Endogenous gibberellins of mango shoot-tips and their significance in flowering. Scientia Horticulturae 9:369−79 doi: 10.1016/0304-4238(78)90046-8
|
[68] |
Chen WS. 1990. Endogenous growth substances in xylem and shoot tip diffusate of lychee in relation to flowering. HortScience 25:314−15 doi: 10.21273/hortsci.25.3.314
|
[69] |
Samuolienė G, Čeidaitė A, Sirtautas R, Duchovskis P, Kviklys D. 2016. Effect of crop load on phytohormones, sugars, and biennial bearing in apple trees. Biologia Plantarum 60:394−400 doi: 10.1007/s10535-015-0581-3
|
[70] |
Thompson MY, Randall J, Heerema RJ, VanLeeuwen D. 2019. Exogenous plant growth regulators show promise for management of alternate bearing in pecan. HortScience 54:1204−7 doi: 10.21273/HORTSCI13854-18
|
[71] |
Wood BW. 2011. Influence of aminoethoxyvinylglycine (AVG) on yield and quality of nut crops from a commercial pecan orchard. HortScience 46:586−89 doi: 10.21273/HORTSCI.46.4.586
|
[72] |
Wood BW, Lombardini L, Heerema RJ. 2009. Influence of aminoethoxyvinylglycine on pecan fruit retention. HortScience 44:1884−89 doi: 10.21273/HORTSCI.44.7.1884
|
[73] |
Orozco-Meléndez LR, Hernández-Rodríguez OA, Cruz-Alvarez O, Cano-Medrano R, Jacobo-Cuellar JL, et al. 2021. Foliar application of some growth bioregulators and their effect on the yield and nut quality in pecan. Journal of Elementology 26:407−17 doi: 10.5601/jelem.2021.26.1.2063
|
[74] |
Mog B, Adiga D, Nayak MG. 2018. Role of Plant Growth Hormones in Cashew: Key Strategy for Modifying Crop Performance. International Journal of Current Microbiology and Applied Sciences 7:1470−84 doi: 10.20546/ijcmas.2018.707.174
|
[75] |
Misra LP, Singh R. 1991. Effect of paclobutrazol on cashew grafts in nursery. India Journal of Plant Physiology 34:102−5
|
[76] |
Meena RK, Adiga JD, Nayak MG, Saroj PL, Kalaivanan D. 2014. Effect of paclobutrazol on growth and yield of cashew (Anacardium occidentale L.). Vegetos 27:11−6 doi: 10.5958/j.2229-4473.27.1.003
|
[77] |
Wongsrisakulkaew Y, Boonprakob U, Sethpakdee R, Juntawong N. 2017. Effect of paclobutrazol concentrations and time of foliar application on flowering of 'namdokmai-sitong' mango. International Journal of GEOMATE 12:41−5
|
[78] |
Allan P, George AP, Nissen RJ, Rasmussen TS, Morley-Bunke MJ. 1993. Effects of paclobutrazol on phenological cycling of low-chill 'Flordaprince' peach in subtropical Australia. Scientia Horticulturae 53:73−84 doi: 10.1016/0304-4238(93)90139-H
|
[79] |
Arzani K, Rousta HR. 2004. Effects of paclobutrazol on vegetative and reproductive growth and leaf mineral content of mature apricot (Prunus Armeniaca L.) Trees. Journal of Agriculture Science and Technology 6:43−45
|
[80] |
Wood BW. 1998. Paclobutrazol suppresses vegetative growth of large pecan trees. HortScience 23:341−43
|
[81] |
Gaash D, David I. 1989. Paclobutrazol effect on growth of pecan trees. VI International Symposium on Growth Regulators in Fruit Production, Penticton, Canada. ISHS Acta Horticulturae 239: 301−4 https://doi.org/10.17660/actahortic.1989.239.47
|
[82] |
Andersen PC. 1988. Vegetative and reproductive effects of cultar applied to 'Cape Fear' and 'Desirable' pecan trees. Proceedings of the Florida State Horticultural Society 101:254−56
|
[83] |
Zhu H, Stafne ET. 2019. Influence of paclobutrazol on shoot growth and flowering in a high-density pecan orchard. HortTechnology 29:210−12 doi: 10.21273/HORTTECH04241-18
|
[84] |
Graham CJ, Storey JB. 2000. Method of application of uniconazol affects vegetative growth of pecan. HortScience 35:1199−201 doi: 10.21273/HORTSCI.35.7.1199
|
[85] |
Ghadage VR, Ahlawat TR, Chawla SL, Shah NI, Ghadage N. 2016. Effect of plant growth regulators on flowering behavior of cashew cv. Vengurla-4 grown in the hilly tracts of South Gujarat. Journal of Applied and Natural Science 8:23−27 doi: 10.31018/jans.v8i1.739
|
[86] |
Jena C, Panda PK, Karna AK. 2018. Effect of growth promoting substances on flowering behaviour of cashew cv. BPP- 8 grown in the coastal region of Odisha. International Journal of Chemical Studies 6:908−11
|
[87] |
Gawankar MS, Sawale RD, Pawar SN, Chavan SA. 2010. Effect of Ethrel® on flowering, sex-expression and yield in cashew. Journal of Horticultural Sciences 5:68−70
|
[88] |
Puhual S, Bunchongsiri S, Booranasawettathrum S. 1993. Effect of plant growth regulators on sex expression of cashew nut. Tenth Rajamangala Institute of Technology Seminar on Agricultural Science: Plant Science, Lampang (Thailand). pp. 90−95 https://agris.fao.org/agris-search/search.do?recordID=TH1997020107
|
[89] |
Konhar T, Mech A, Mech A. 1988. Effects of growth regulators on flowering, fruit set and fruit retention in cashew (Anacardium occidentale L.). Indian Cashew Journal 18:17−19
|
[90] |
Chen WS. 1983. Cytokinins of the developing mango fruit. Plant Physiol 71:356−62 doi: 10.1104/pp.71.2.356
|