[1]

Maio R, García-Díez J, Saraiva C. 2020. Microbiological quality of foodstuffs sold on expiry date at retail in portugal: a preliminary study. Foods 9:919

doi: 10.3390/foods9070919
[2]

Mørkbak MR, Christensen T, Gyrd-Hansen D. 2011. Consumers' willingness to pay for safer meat depends on the risk reduction methods - A Danish case study on Salmonella risk in minced pork. Food Control 22:445−51

doi: 10.1016/j.foodcont.2010.09.024
[3]

van Ba H, Seo HW, Seong PN, Kang SM, Cho SH, et al. 2019. The fates of microbial populations on pig carcasses during slaughtering process, on retail cuts after slaughter, and intervention efficiency of lactic acid spraying. International Journal of Food Microbiology 294:10−17

doi: 10.1016/j.ijfoodmicro.2019.01.015
[4]

Colello R, Cáceres ME, Ruiz MJ, Sanz M, Etcheverría AI, et al. 2016. From farm to table: follow-up of Shiga toxin-producing Escherichia coli throughout the pork production chain in Argentina. Frontiers in Microbiology 7:93

doi: 10.3389/fmicb.2016.00093
[5]

Delhalle L, Saegerman C, Farnir F, Korsak N, Maes D, et al. 2009. Salmonella surveillance and control at post-harvest in the Belgian pork meat chain. Food Microbiology 26:265−71

doi: 10.1016/j.fm.2008.12.009
[6]

Pesciaroli M, Cucco L, De Luca S, Massacci FR, Maresca C, et al. 2017. Association between pigs with high caecal Salmonella loads and carcass contamination. International Journal of Food Microbiology 242:82−86

doi: 10.1016/j.ijfoodmicro.2016.11.021
[7]

Prendergast DM, Duggan SJ, Gonzales-Barron U, Fanning S, Butler F, et al. 2009. Prevalence, numbers and characteristics of Salmonella spp. on Irish retail pork. International Journal of Food Microbiology 131:233−39

doi: 10.1016/j.ijfoodmicro.2009.03.003
[8]

Reid R, Fanning S, Whyte P, Kerry J, Lindqvist R, et al. 2017. The microbiology of beef carcasses and primals during chilling and commercial storage. Food Microbiology 61:50−57

doi: 10.1016/j.fm.2016.08.003
[9]

Yang X, Noyes NR, Doster E, Martin JN, Linke LM, et al. 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Applied and Environmental Microbiology 82:2433−43

doi: 10.1128/AEM.00078-16
[10]

Incili GK, Çalicioğlu M. 2018. Change in scalding fluids by time in poultry slaughterhouse and its effect on microbiological quality of carcasses. Journal of Food Safety 38:e12485

doi: 10.1111/jfs.12485
[11]

Warriner K, Aldsworth TG, Kaur S, Dodd CER. 2002. Cross-contamination of carcasses and equipment during pork processing. Journal of Applied Microbiology 93:169−77

doi: 10.1046/j.1365-2672.2002.01678.x
[12]

Duffy EA, Belk KE, Sofos JN, Bellinger GR, Pape A, et al. 2001. Extent of microbial contamination in United States pork retail products. Journal of Food Protection 64:172−78

doi: 10.4315/0362-028X-64.2.172
[13]

Lenahan M, Crowley H, O’Brien SB, Byrne C, Sweeney T, et al. 2009. The potential use of chilling to control the growth of Enterobacteriaceae on porcine carcasses and the incidence of E. coli O157:H7 in pigs. Journal of Applied Microbiology 106:1512−20

doi: 10.1111/j.1365-2672.2008.04112.x
[14]

Palá TR, Sevilla A. 2004. Microbial contamination of carcasses, meat, and equipment from an Iberian pork cutting plant. Journal of Food Protection 67:1624−29

doi: 10.4315/0362-028X-67.8.1624
[15]

Byrne B, Lyng J, Dunne G, Bolton DJ. 2008. An assessment of the microbial quality of the air within a pork processing plant. Food Control 19:915−20

doi: 10.1016/j.foodcont.2007.08.016
[16]

Chang VP, Mills EW, Cutter CN. 2003. Reduction of bacteria on pork carcasses associated with chilling method. Journal of Food Protection 66:1019−24

doi: 10.4315/0362-028X-66.6.1019
[17]

Voloski FLS, Tonello L, Ramires T, Reta GG, Dewes C, et al. 2016. Influence of cutting and deboning operations on the microbiological quality and shelf life of buffalo meat. Meat Science 116:207−12

doi: 10.1016/j.meatsci.2016.02.020
[18]

Cauchie E, Delhalle L, Taminiau B, Tahiri A, Korsak N, et al. 2020. Assessment of spoilage bacterial communities in food wrap and modified atmospheres-packed minced pork meat samples by 16S rDNA metagenetic analysis. Frontiers in Microbiology 10:3074

doi: 10.3389/fmicb.2019.03074
[19]

Biasino W, De Zutter L, Mattheus W, Bertrand S, Uyttendaele M, et al. 2018. Correlation between slaughter practices and the distribution of Salmonella and hygiene indicator bacteria on pig carcasses during slaughter. Food Microbiology 70:192−99

doi: 10.1016/j.fm.2017.10.003
[20]

Li MY, Zhou GH, Xu XL, Li CB, Zhu WY. 2006. Changes of bacterial diversity and main flora in chilled pork during storage using PCR-DGGE. Food Microbiology 23:607−11

doi: 10.1016/j.fm.2006.01.004
[21]

Jiang Y, Gao F, Xu XL, Su Y, Ye KP, et al. 2010. Changes in the bacterial communities of vacuum-packaged pork during chilled storage analyzed by PCR-DGGE. Meat Science 86:889−95

doi: 10.1016/j.meatsci.2010.05.021
[22]

Yim DG, Jin SK, Hur SJ. 2019. Microbial changes under packaging conditions during transport and comparison between sampling methods of beef. Journal of Animal Science and Technology 61:47−53

doi: 10.5187/jast.2019.61.1.47
[23]

Yu SL, Cooke PH, Tu SI. 2001. Effects of chilling on sampling of bacteria attached to swine carcasses. Letters in Applied Microbiology 32:205−10

doi: 10.1046/j.1472-765x.2001.00886.x
[24]

Ghafir Y, Daube G. 2008. Comparison of swabbing and destructive methods for microbiological pig carcass sampling. Letters in Applied Microbiology 47:322−26

doi: 10.1111/j.1472-765X.2008.02433.x
[25]

Zhao F, Zhou G, Ye K, Wang S, Xu X, et al. 2015. Microbial changes in vacuum-packed chilled pork during storage. Meat Science 100:145−49

doi: 10.1016/j.meatsci.2014.10.004
[26]

Li N, Zhang Y, Wu Q, Gu Q, Chen M, et al. 2019. High-throughput sequencing analysis of bacterial community composition and quality characteristics in refrigerated pork during storage. Food Microbiology 83:86−94

doi: 10.1016/j.fm.2019.04.013
[27]

Peruzy MF, Houf K, Joossens M, Yu Z, Proroga YTR, et al. 2021. Evaluation of microbial contamination of different pork carcass areas through culture-dependent and independent methods in small-scale slaughterhouses. International Journal of Food Microbiology 336:108902

doi: 10.1016/j.ijfoodmicro.2020.108902
[28]

Zhang Y, Wei J, Yuan Y, Yue T. 2019. Diversity and characterization of spoilage-associated psychrotrophs in food in cold chain. International Journal of Food Microbiology 290:86−95

doi: 10.1016/j.ijfoodmicro.2018.09.026
[29]

James SJ, James C. 2010. Advances in the cold chain to improve food safety, food quality and the food supply chain. In Delivering Performance in Food Supply Chains, eds, by Mena C, Stevens G. Cambridge, UK: Woodhead Publishing pp. 366−86 https://doi.org/10.1533/9781845697778.5.366

[30]

Gao T, Tian Y, Zhu Z, Sun D. 2020. Modelling, responses and applications of time-temperature indicators (TTIs) in monitoring fresh food quality. Trends in Food Science & Technology 99:311−22

doi: 10.1016/j.jpgs.2020.02.019
[31]

Xu X, Zhang X. 2021. Simulation and experimental investigation of a multi-temperature insulation box with phase change materials for cold storage. Journal of Food Engineering 292:110286

doi: 10.1016/j.jfoodeng.2020.110286
[32]

Fikiin, K., Akterian, S., & Stankov, B. 2020. Do raw eggs need to be refrigerated along the food chain?: : Is the current EU regulation ensuring high-quality shell eggs for the European consumers? Trends in Food Science & Technology 100:359−62

doi: 10.1016/j.jpgs.2020.04.003
[33]

Olsson C, Ahrné S, Pettersson B, Molin G. 2003. The bacterial flora of fresh and chill-stored pork: analysis by cloning and sequencing of 16S rRNA genes. International Journal of Food Microbiology 83:245−52

doi: 10.1016/S0168-1605(02)00372-0
[34]

de Porcellato D, Skeie SB, de Mellegård H, Monshaugen M, Göransson Aanrud S, et al. 2021. Characterization of Bacillus cereus sensulato isolates from milk for consumption; phylogenetic identity, potential for spoilage and disease. Food Microbiology 93:103604

doi: 10.1016/j.fm.2020.103604
[35]

Juneja VK, Purohit AS, Golden M, Osoria M, Glass KA, et al. 2021. A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef. Food Microbiology 93:103618

doi: 10.1016/j.fm.2020.103618
[36]

Maenaka R, Tani S, Hikichi Y, Kai K. 2020. Actinomycins inhibit the production of the siderophore pyoverdines in the plant pathogen Pseudomonas cichorii SPC9018. Bioscience, Biotechnology and Biochemistry 84:1975−85

doi: 10.1080/09168451.2020.1785839
[37]

Liu XW, Zhang Q, Song XH, Luo YB, Hu M, et al. 2020. Effect of phage on the reduction of rotten eggs caused by Pseudomonas aeruginosa. Acta Veterinaria et Zootechnica Sinica 51:1756−63

doi: 10.11843/j.issn.0366-6964.2020.07.028
[38]

Zweifel C, Fischer R, Stephan R. 2008. Microbiological contamination of pig and cattle carcasses in different small-scale Swiss abattoirs. Meat Science 78:225−31

doi: 10.1016/j.meatsci.2007.06.025